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GENERALIZED ABSOLUTE CESÀRO SUMMABILITY OF
FACTORED INFINITE SERIES

HÜSEYİN BOR

Abstract. In this paper, we have proved a general theorem dealing with
φ−| C,α, β |k summability factors of infinite series. Also, we have obtained
some new and known results related to the different special summability
methods.
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1. Introduction

Let
∑
an be an infinite series. We denote by tα,βn the nth Cesàro mean of

order (α, β), with α+ β > −1, of the sequence (nan), that is (see [6])

tα,βn =
1

Aα+βn

n∑
v=1

Aα−1
n−vA

β
vvav, (1)

where

Aα+βn ≃ nα+β

Γ (α+ β + 1)
, Aα+β0 = 1 and Aα+β−n = 0 for n > 0. (2)

Let (φn) be a sequence of complex numbers. The series
∑
an is said to be

summable φ− | C,α, β |k, k ≥ 1, if (see [4])
∞∑
n=1

1

nk
| φntα,βn |k<∞. (3)

In the special case when φn = n1−
1
k , φ − | C,α, β |k summability is the same

as | C,α, β |k summability (see [7]). Also, if we take φn = nδ+1− 1
k , then

φ − | C,α, β |k summability reduces to | C,α, β; δ |k summability (see [5]). If
we take β = 0, then we have φ − | C,α |k summability (see [1]). If we take
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φn = n1−
1
k and β = 0, then we get | C,α |k summability (see [8]). Finally, if we

take φn = nδ+1− 1
k and β = 0, then we obtain | C,α; δ |k summability (see [9]).

The following theorem is known dealing with the φ− | C,α |k summability fac-
tors of infinite series.
Theorem 1.1[2] Let 0 < α ≤ 1. Let (Xn) be a positive non-decreasing sequence
and let there be sequences (βn) and (λn) such that

| ∆λn |≤ βn (4)

βn → 0 as n→ ∞ (5)
∞∑
n=1

n | ∆βn | Xn <∞ (6)

| λn | Xn = O(1) as n→ ∞. (7)

If there exists an ϵ > 0 such that the sequence (nϵ−k |φn|k) is non increasing and
if the sequence (ωαn) defined by (see [11])

ωαn =

{
|tαn| (α = 1)

max1≤v≤n |tαv | (0 < α < 1)
(8)

satisfies the condition
m∑
n=1

1

nk
(|φn|ωαn)k = O(Xm) as m→ ∞, (9)

then the series
∑
anλn is summable φ− | C,α |k, where k ≥ 1 and (α+ ϵ) > 1.

2. Main result

The aim of this paper is to generalize Theorem 1.1 for φ−| C,α, β |k summa-
bility method. Now we shall prove the following theorem.

Theorem 2.1 Let 0 < α ≤ 1. Let (Xn) be a positive non-decreasing sequence
and the sequences (βn) and (λn) such that conditions (4)-(7) of Theorem 1.1 are
satisfied. If there exists an ϵ > 0 such that the sequence (nϵ−k |φn|k) is non
increasing and if the sequence (ωα,βn ) be a sequence defined by (see [3])

ωα,βn =

{ ∣∣tα,βn ∣∣ , α = 1, β > −1,
max1≤v≤n

∣∣tα,βv ∣∣ , 0 < α < 1, β > −1.
(10)

satisfies the condition
m∑
n=1

1

nk
(|φn|ωα,βn )k = O(Xm) as m→ ∞, (11)

then the series
∑
anλn is summable φ− | C,α, β |k, where k ≥ 1, β > −1, and

(α+ β)k + ϵ > 1.
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We need the following lemmas for the proof of our theorem.
Lemma 2.2 [3] If 0 < α ≤ 1, β > −1, and 1 ≤ v ≤ n, then

|
v∑
p=0

Aα−1
n−pA

β
pap |≤ max

1≤m≤v
|
m∑
p=0

Aα−1
m−pA

β
pap | . (12)

Lemma 2.3 [10] Under the conditions on (Xn), (βn) and (λn) as taken in the
statement of Theorem 1.1, the following conditions hold, when (6) is satisfied;

nβnXn = O(1) as n→ ∞ (13)

∞∑
n=1

βnXn <∞. (14)

3. Proof of Theorem 2.1

Let (Tα,βn ) be the nth (C,α, β) mean of the sequence (nanλn). Then, by (1),
we have

Tα,βn =
1

Aα+βn

n∑
v=1

Aα−1
n−vA

β
vvavλv.

Applying Abel’s transformation first and then using Lemma 2. 2, we have that

Tα,βn =
1

Aα+βn

n−1∑
v=1

∆λv

v∑
p=1

Aα−1
n−pA

β
ppap +

λn

Aα+βn

n∑
v=1

Aα−1
n−vA

β
vvav,

| Tα,βn | ≤ 1

Aα+βn

n−1∑
v=1

| ∆λv ||
v∑
p=1

Aα−1
n−pA

β
ppap | +

| λn |
Aα+βn

|
n∑
v=1

Aα−1
n−vA

β
vvav |

≤ 1

Aα+βn

n−1∑
v=1

A(α+β)
v ωα,βv | ∆λv | + | λn | ωα,βn = Tα,βn,1 + Tα,βn,2 .

To complete the proof of Theorem 2.1, by Minkowski’s inequality, it is sufficient
to show that

∞∑
n=1

1

nk
| φnTα,βn,r |k<∞, for r = 1, 2.

Now, when k > 1, applying Hölder’s inequality with indices k and k′, where
1
k + 1

k′ = 1, we get that
m+2∑
n=2

1

nk
| φnTα,βn,1 |k ≤

m+1∑
n=2

n−k(Aα+βn )
−k | φn |k{

n−1∑
v=1

Aα+βv ωα,βv | ∆λv |}k

≤
m+1∑
n=2

n−kn−(α+β)k | φn |k
n−1∑
v=1

(Aα+βv )k(ωα,βv )kβv.{
n−1∑
v=1

βv}k−1
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= O(1)

m∑
v=1

v(α+β)k(ωα,βv )kβv

m+1∑
n=v+1

nϵ−k | φn |k

n(α+β)k+ϵ

= O(1)

m∑
v=1

v(α+β)k(ωα,βv )kβvv
ϵ−k | φv |k

m+1∑
n=v+1

1

n(α+β)k+ϵ

= O(1)

m∑
v=1

v(α+β)k(ωα,βv )kvϵ−k | φv |k βv
∫ ∞

v

dx

x(α+β)k+ϵ

= O(1)

m∑
v=1

vβvv
−k(ωα,βv | φv |)k

= O(1)

m−1∑
v=1

∆(vβv)

v∑
r=1

r−k(ωα,βr | φr |)k

+O(1)mβm

m∑
v=1

v−k(ωα,βv | φv |)k

= O(1)

m−1∑
v=1

|∆(vβv)|Xv +O(1)mβmXm

= O(1)

m−1∑
v=1

v|∆βv|Xv +O(1)

m−1∑
v=1

βvXv +O(1)mβmXm

= O(1) as m→ ∞,

by the hypotheses of Theorem 2.1 and Lemma 2.3. Since, | λn |= O(1) by (7),
finally we have that

m∑
n=1

1

nk
| φnTα,βn,2 |k

= O(1)

m∑
n=1

| λn | n−k(ωα,βn | φn |)k = O(1)

m−1∑
n=1

∆ | λn |
n∑
v=1

v−k(ωα,βv |φv|)k

+O(1)|λm|
m∑
n=1

n−k(ωα,βn |φn|)k = O(1)

m−1∑
n=1

| ∆λn | Xn +O(1) | λm | Xm

= O(1)

m−1∑
n=1

βnXn +O(1) | λm | Xm = O(1) as m→ ∞,

by the hypotheses of Theorem 2.1 and Lemma 2.3. This completes the proof.

4. Conclusions

If we take ϵ = 1 and φn = n1−
1
k , then we obtain a new result concerning

the | C,α, β |k summability factors of infinite series. Also, if we take ϵ = 1,
β = 0 and φn = nδ+1− 1

k , then we have a new result dealing with the | C,α; δ |k
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summability factors of infinite series. Finally, if we set β = 0, then we obtain
Theorem 1.1.
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