• 제목/요약/키워드: parasitic thyristor

검색결과 11건 처리시간 0.02초

전류포화특성을 갖는 새로운 이중게이트 수평형 사이리스터의 순방향 특성 (The Forward Characteristics of A New Lateral Thyristor with Current Saturation)

  • 이유상;최연익;한민구
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권12호
    • /
    • pp.773-776
    • /
    • 1999
  • A newly proposed lateral dual-gate thyristor was fabricated and measured, which has excellent current saturation characteristics of $1200A/cm^2$ even at an anode-gate voltage of 29V, through the elimination of the structurally existing parasitic thyristor. And through the comparison with the LIGBT, the excellent current saturation characteristics of a newly proposed device was verified.

  • PDF

수직형 직렬 MOSFET 구조의 Emitter Switched Thyristor (An Emitter Switched Thyristor with vertical series MOSFET structure)

  • 김대원;김대종;성만영;강이구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.392-395
    • /
    • 2003
  • For the first time, the new dual trench gate Emitter Switched Thyristor is proposed for eliminating snap-back effect which leads to a lot of serious problems of device applications. Also, the parasitic thyristor that is inherent in the conventional EST is completely eliminated in the proposed EST structure, allowing higher maximum controllable current densities for ESTs. Moreover, the new dual trench gate allows homogenous current distribution throughout device and preserves the unique feature of the gate controlled current saturation of the thyristor current. The conventional EST exhibits snap-back with the anode voltage and current density 2.73V and $354/{\S}^2$, respectively. But the proposed EST exhibits snap-back with the anode voltage and current density 0.93V and $58A/{\S}^2$, respectively. Saturation current density of the proposed EST at anode voltage 6.11V is $3797A/{\S}^2$. The characteristics of 700V forward blocking of the proposed EST obtained from two dimensional numerical simulations (MEDICI) is described and compared with that of the conventional EST.

  • PDF

A New EST with Dual Trench Gate Electrode (DTG-EST)

  • Kim, Dae-Won;Sung, Man-Young;Kang, Ey-Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권2호
    • /
    • pp.15-19
    • /
    • 2003
  • In this paper, the new dual trench gate Emitter Switched Thyristor (DTG-EST) is proposed for improving snap-back effect which leads to a lot of serious problems of device applications. Also the parasitic thyristor that is inherent in the conventional EST is completely eliminated in this structure, allowing higher maximum controllable current densities for ESTs. The conventional EST exhibits snap-back with the anode voltage and current density 2.73V and 35A/$\textrm{cm}^2$, respectively. But the proposed DTG-EST exhibits snap-back with the anode voltage and current density 0.96V and 100A/$\textrm{cm}^2$, respectively.

700V급 듀얼 트랜치 게이트를 가지는 Emitter Switched Thyristor(EST) (700V Emitter Switched Thyristor(EST) with Dual Trench Gate)

  • 김대원;성만영;강이구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 기술교육전문연구회
    • /
    • pp.27-30
    • /
    • 2003
  • In this paper, the new dual trench gate Emitter Switched Thyristor (DTG-EST) is proposed for improving snap-back effect which leads to a lot of serious problems of device applications. And the parasitic thyristor that is inherent in the conventional EST is completely eliminated in this structure, allowing higher maximum controllable current densities for ESTs. The conventional EST exhibits snap-back with the anode voltage and current density 2.73V and $35A/cm^2$, respectively. But the proposed DTG-EST exhibits snap-back with the anode voltage and current density 0.96V and $100A/cm^2$, respectively.

  • PDF

1700 V급 EST소자의 설계 및 제작에 관한 연구 (Design and Fabrication of 1700 V Emitter Switched Thyristor)

  • 강이구;안병섭;남태진
    • 한국전기전자재료학회논문지
    • /
    • 제23권3호
    • /
    • pp.183-189
    • /
    • 2010
  • In this paper, the trench gate emitter switched thyristor(EST) withl trench gate electrode is proposed for improving snap-back effect which leads to a lot of problems in device applications. The parasitic thyristor which is inherent in the conventional EST is completely eliminated in this structure, allowing higher maximum controllable current densities for ESTs. The dual trench gate allows homogenous current distribution in the EST and preserves the unique feature of the gate controlled current saturation of the thyristor current. The characteristics of the 1700 V forward blocking EST obtained from two-dimensional numerical simulations (MEDICI) is described and compared with that of a conventional EST. we carried out layout, design and process of EST devices.

RF IC용 싸이리스터형 정전기 보호소자 설계에 관한 연구 (A study on the design of thyristor-type ESD protection devices for RF IC's)

  • 최진영;조규상
    • 전기전자학회논문지
    • /
    • 제7권2호
    • /
    • pp.172-180
    • /
    • 2003
  • CMOS RF IC에서 중요한 문제가 되는 입력 노드에의 기생 커패시턴스 추가 문제를 줄이기 위해, 2차원 소자 시뮬레이션 결과 및 그에 따른 분석을 기반으로, 표준 CMOS 공정에서 쉽게 제작 가능한 pnpn 싸이리스터 구조의 ESD 보호용 소자를 제안한다. 제안된 소자의 DC 항복특성을 일반적으로 사용되고 있는 보호용 NMOS 트랜지스터 경우와 비교 분석하여 제안된 소자를 사용하였을 경우의 이점을 입증한다. 시뮬레이션을 통해 제안된 소자에 의한 특성 향상을 보이고 이와 관련된 미케니즘들에 대해 설명한다. 또한 제안된 소자의 최적 구조를 정의하기 위해 소자구조에 따른 특성변화를 조사한다. ESD 보호용으로 제안된 소자를 사용할 경우 추가되는 기생 커패시턴스의 감소 정도를 보이기 위해 AC 시뮬레이션 결과도 소개한다. 본 논문의 분석 결과는, CMOS RF IC에서 ESD 보호용으로 제안된 소자를 사용할 경우 NMOS 트랜지스터를 사용할 경우와 대비, 동일한 ESD 강도를 유지하면서 입력노드에 추가되는 커패시턴스의 양을 1/40 정도로 줄일 수 있는 가능성을 보여준다.

  • PDF

높은 latch-up 전류특성을 갖는 트랜치 캐소드 삽입형 IGBT (A Novel Inserted Trench Cathode IGBT Device with High Latching Current)

  • 조병섭;곽계달
    • 전자공학회논문지A
    • /
    • 제30A권7호
    • /
    • pp.32-37
    • /
    • 1993
  • A novel insulated gate bipolar transister (IGBT), called insulated trench cathode IGBT (ISTC-IGBT), is proposed. ISTC-IGBT has a trenched well with the shallow P$^{+}$ juction in the conventional IGBT structure. The proposed structure has the capability of effectively suppressing the parasitic thyristor latchup. The holding current of ISTC-IGBT is about 2.2 times greater than that of the conventional IGBT. Detailed analysis of the latchup characteristics of ISTC-IGBT is performed by using the two-dimensional device simulator, PISCES-II B.

  • PDF

고속 전원차단 회로 설계 제작 및 측정 (A Design of High-speed Power-off Circuit and Analysis)

  • 정상훈;이남호;조성익
    • 전기학회논문지
    • /
    • 제63권4호
    • /
    • pp.490-494
    • /
    • 2014
  • In this paper, a design of high-speed power-off circuit and analysis. The incidence of high-dose transient radiation into the silicon-based semiconductor element induces the photocurrent due to the creation of electron-hole pairs, which causes the upset phenomenon of active elements or triggers the parasitic thyristor in the element, resulting in latch-up. High speed power-off circuit was designed to prevent burn-out of electronic device caused by Latch-up. The proposed high speed power-off circuit was configured with the darlington transistor and photocoupler so that the power was interrupted and recovered without the need for an additional circuit, in order to improve the existing problem of SCR off when using the thyristor. The discharge speed of the high speed power interruption circuit was measured to be 19 ${\mu}s$ with 10 ${\mu}F$ and 500 ${\Omega}$ load, which was 98% shorter than before (12.8 ms).

Trench 식각각도에 따른 Super Juction MOSFET의 래치 업 특성에 관한 연구 (Study on Latch Up Characteristics of Super Junction MOSFET According to Trench Etch Angle)

  • 정헌석;강이구
    • 한국전기전자재료학회논문지
    • /
    • 제27권9호
    • /
    • pp.551-554
    • /
    • 2014
  • This paper was showed latch up characteristics of super junction power MOSFET by parasitic thyristor according to trench etch angle. As a result of research, if trench etch angle of super junction MOSFET is larger, we obtained large latch up voltage. When trench etch angle was $90^{\circ}$, latch up voltage was more 50 V. and we got 700 V breakdown voltage. But we analyzed on resistance. if trench etch angle of super junction MOSFET is larger, we obtained high on resistance. Therefore, we need optimal point by simulation and experiment for solution of trade off.

과도방사선에 의한 CMOS 소자 Latch-up 모델 연구 (A Study of CMOS Device Latch-up Model with Transient Radiation)

  • 정상훈;이남호;이민수;조성익
    • 전기학회논문지
    • /
    • 제61권3호
    • /
    • pp.422-426
    • /
    • 2012
  • Transient radiation is emitted during a nuclear explosion. Transient radiation causes a fatal error in the CMOS circuit as a Upset and Latch-up. In this paper, transient radiation NMOS, PMOS, INVERTER SPICE model was proposed on the basisi of transient radiation effects analysis using TCAD(Technology Computer Aided Design). Photocurrent generated from the MOSFET internal PN junction was expressed to the current source and Latch-up phenomenon in the INVERTER was expressed to parasitic thyristor for the transient radiation SPICE model. For example, the proposed transient radiation SPICE model was applied to CMOS NAND circuit. SPICE simulated characteristics were similar to the TCAD simulation results. Simulation time was reduced to 120 times compared to TCAD simulation.