• 제목/요약/키워드: n-maximal ideal

검색결과 42건 처리시간 0.023초

THE IDEAL CLASS GROUP OF POLYNOMIAL OVERRINGS OF THE RING OF INTEGERS

  • Chang, Gyu Whan
    • 대한수학회지
    • /
    • 제59권3호
    • /
    • pp.571-594
    • /
    • 2022
  • Let D be an integral domain with quotient field K, Pic(D) be the ideal class group of D, and X be an indeterminate. A polynomial overring of D means a subring of K[X] containing D[X]. In this paper, we study almost Dedekind domains which are polynomial overrings of a principal ideal domain D, defined by the intersection of K[X] and rank-one discrete valuation rings with quotient field K(X), and their ideal class groups. Next, let ℤ be the ring of integers, ℚ be the field of rational numbers, and 𝔊f be the set of finitely generated abelian groups (up to isomorphism). As an application, among other things, we show that there exists an overring R of ℤ[X] such that (i) R is a Bezout domain, (ii) R∩ℚ[X] is an almost Dedekind domain, (iii) Pic(R∩ℚ[X]) = $\oplus_{G{\in}G_{f}}$ G, (iv) for each G ∈ 𝔊f, there is a multiplicative subset S of ℤ such that RS ∩ ℚ[X] is a Dedekind domain with Pic(RS ∩ ℚ[X]) = G, and (v) every invertible integral ideal I of R ∩ ℚ[X] can be written uniquely as I = XnQe11···Qekk for some integer n ≥ 0, maximal ideals Qi of R∩ℚ[X], and integers ei ≠ 0. We also completely characterize the almost Dedekind polynomial overrings of ℤ containing Int(ℤ).

Where Some Inert Minimal Ring Extensions of a Commutative Ring Come from

  • Dobbs, David Earl
    • Kyungpook Mathematical Journal
    • /
    • 제60권1호
    • /
    • pp.53-69
    • /
    • 2020
  • Let (A, M) ⊂ (B, N) be commutative quasi-local rings. We consider the property that there exists a ring D such that A ⊆ D ⊂ B and the extension D ⊂ B is inert. Examples show that the number of such D may be any non-negative integer or infinite. The existence of such D does not imply M ⊆ N. Suppose henceforth that M ⊆ N. If the field extension A/M ⊆ B/N is algebraic, the existence of such D does not imply that B is integral over A (except when B has Krull dimension 0). If A/M ⊆ B/N is a minimal field extension, there exists a unique such D, necessarily given by D = A + N (but it need not be the case that N = MB). The converse fails, even if M = N and B/M is a finite field.

환의 PRIME SPECTRUM에 관하여 (ON THE PRIME SPECTRUM OF A RING)

  • 김응태
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제12권2호
    • /
    • pp.5-12
    • /
    • 1974
  • 단위원을 가지는 하환환에 있어서의 Prime Spectrum에 관하여 다음 세가지 사실을 증명하였다. 1. X를 환 R의 prime spectrum, C(X)를 X에서 정의되는 실연적함수의 환, X를 C(X)의 maximal spectrum이라 하면 X는 C(X)의 prime spectrum의 부분공간으로서의 한 T-space로 된다. N을 환 R의 nilradical이라 하면, R/N이 regula 이면 X와 X는 위상동형이다. 2. f: R$\longrightarrow$R'을 ring homomorphism, P를 R의 한 Prime ideal, $R_{p}$, R'$_{p}$를 각각 S=R-P 및 f(S)에 관한 분수환(ring of fraction)이라 하고, k(P)를 local ring $R_{p}$의 residue' field라 할 때, R'의 prime spectrum의 부분공간인 $f^{*-1}$(P)는 k(P)(equation omitted)$_{R}$R'의 prime spectrum과 위상동형이다. 단 f*는 f*(Q)=$f^{-1}$(Q)로서 정의되는 함수 s*:Spec(R')$\longrightarrow$Spec(R)이다. 3. X를 환 S의 prime spectrum, N을 R의 nilradical이라 할 때, 다음 네가지 사실은 동치이다. (1) R/N 은 regular 이다. (2) X는 Zarski topology에 관하여 Hausdorff 공간이다. (3) X에서의 Zarski topology와 constructible topology와는 일치한다. (4) R의 임의의 원소 f에 대하여 f를 포함하지 않는 R의 prime ideal 전체의 집합 $X_{f}$는 Zarski topology에 관하여 개집합인 동시에 폐집합이다.폐집합이다....

  • PDF

GENTRAL SEPARABLE ALGEBRAS OVER LOCAL-GLOBAL RINGS I

  • Kim, Jae-Gyeom
    • 대한수학회보
    • /
    • 제30권1호
    • /
    • pp.61-64
    • /
    • 1993
  • In this paper, we show that if R is a local-global domain then the Question holds. McDonald and Waterhouse in [6] and Estes and Guralnick in [5] introduced the concept of local-global rings (so called rings with many units) independently. A local-global ring is a commutative ring R with 1 satisfying; if a polynomial f in R[ $x_{1}$, .., $x_{n}$] represents a unit over $R_{P}$ for every maximal ideal P in R, then f represents a unit over R. Such rings include semilocal rings, or more generally, rings which are von Neumann regular mod their Jacobson radical, and the ring of all algebraic integers.s.s.

  • PDF

THE ANNIHILATING-IDEAL GRAPH OF A RING

  • ALINIAEIFARD, FARID;BEHBOODI, MAHMOOD;LI, YUANLIN
    • 대한수학회지
    • /
    • 제52권6호
    • /
    • pp.1323-1336
    • /
    • 2015
  • Let S be a semigroup with 0 and R be a ring with 1. We extend the definition of the zero-divisor graphs of commutative semigroups to not necessarily commutative semigroups. We define an annihilating-ideal graph of a ring as a special type of zero-divisor graph of a semigroup. We introduce two ways to define the zero-divisor graphs of semigroups. The first definition gives a directed graph ${\Gamma}$(S), and the other definition yields an undirected graph ${\overline{\Gamma}}$(S). It is shown that ${\Gamma}$(S) is not necessarily connected, but ${\overline{\Gamma}}$(S) is always connected and diam$({\overline{\Gamma}}(S)){\leq}3$. For a ring R define a directed graph ${\mathbb{APOG}}(R)$ to be equal to ${\Gamma}({\mathbb{IPO}}(R))$, where ${\mathbb{IPO}}(R)$ is a semigroup consisting of all products of two one-sided ideals of R, and define an undirected graph ${\overline{\mathbb{APOG}}}(R)$ to be equal to ${\overline{\Gamma}}({\mathbb{IPO}}(R))$. We show that R is an Artinian (resp., Noetherian) ring if and only if ${\mathbb{APOG}}(R)$ has DCC (resp., ACC) on some special subset of its vertices. Also, it is shown that ${\overline{\mathbb{APOG}}}(R)$ is a complete graph if and only if either $(D(R))^2=0,R$ is a direct product of two division rings, or R is a local ring with maximal ideal m such that ${\mathbb{IPO}}(R)=\{0,m,m^2,R\}$. Finally, we investigate the diameter and the girth of square matrix rings over commutative rings $M_{n{\times}n}(R)$ where $n{\geq} 2$.

ON OVERRINGS OF GORENSTEIN DEDEKIND DOMAINS

  • Hu, Kui;Wang, Fanggui;Xu, Longyu;Zhao, Songquan
    • 대한수학회지
    • /
    • 제50권5호
    • /
    • pp.991-1008
    • /
    • 2013
  • In this paper, we mainly discuss Gorenstein Dedekind do-mains (G-Dedekind domains for short) and their overrings. Let R be a one-dimensional Noetherian domain with quotient field K and integral closure T. Then it is proved that R is a G-Dedekind domain if and only if for any prime ideal P of R which contains ($R\;:_K\;T$), P is Gorenstein projective. We also give not only an example to show that G-Dedekind domains are not necessarily Noetherian Warfield domains, but also a definition for a special kind of domain: a 2-DVR. As an application, we prove that a Noetherian domain R is a Warfield domain if and only if for any maximal ideal M of R, $R_M$ is a 2-DVR.

SINGULAR INNER FUNCTIONS OF $L^{1}-TYPE$

  • Izuchi, Keiji;Niwa, Norio
    • 대한수학회지
    • /
    • 제36권4호
    • /
    • pp.787-811
    • /
    • 1999
  • Let M be the maximal ideal space of the Banach algebra $H^{\infty}$ of bounded analytic functions on the open unit disc $\triangle$. For a positive singular measure ${\mu}\;on\;{\partial\triangle},\;let\;{L_{+}}^1(\mu)$ be the set of measures v with $0\;{\leq}\;{\nu}\;{\ll}\;{\mu}\;and\;{{\psi}_{\nu}}$ the associated singular inner functions. Let $R(\mu)\;and\;R_0(\mu)$ be the union sets of $\{$\mid$\psiv$\mid$\;<\;1\}\;and\;\{$\mid${\psi}_{\nu}$\mid$\;<\;0\}\;in\;M\;{\setminus}\;{\triangle},\;{\nu}\;\in\;{L_{+}}^1(\mu)$, respectively. It is proved that if $S(\mu)\;=\;{\partial\triangle}$, where $S(\mu)$ is the closed support set of $\mu$, then $R(\mu)\;=\;R0(\mu)\;=\;M{\setminus}({\triangle}\;{\cup}\;M(L^{\infty}(\partial\triangle)))$ is generated by $H^{\infty}\;and\;\overline{\psi_{\nu}},\;{\nu}\;{\in}\;{L_1}^{+}(\mu)$. It is proved that %d{\theta}(S(\mu))\;=\;0$ if and only if there exists as Blaschke product b with zeros $\{Zn\}_n$ such that $R(\mu)\;{\subset}\;{$\mid$b$\mid$\;<\;1}\;and\;S(\mu)$ coincides with the set of cluster points of $\{Zn\}_n$. While, we proved that $\mu$ is a sum of finitely many point measure such that $R(\mu)\;{\subset}\;\{$\mid${\psi}_{\lambda}$\mid$\;<\;1}\;and\;S(\lambda)\;=\;S(\mu)$. Also it is studied conditions on \mu for which $R(\mu)\;=\;R0(\mu)$.

  • PDF

A New BISON-like Construction Block Cipher: DBISON

  • Zhao, Haixia;Wei, Yongzhuang;Liu, Zhenghong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권5호
    • /
    • pp.1611-1633
    • /
    • 2022
  • At EUROCRYPT 2019, a new block cipher algorithm called BISON was proposed by Canteaut et al. which uses a novel structure named as Whitened Swap-Or-Not (WSN). Unlike the traditional wide trail strategy, the differential and linear properties of this algorithm can be easily determined. However, the encryption speed of the BISON algorithm is quite low due to a large number of iterative rounds needed to ensure certain security margins. Commonly, denoting by n is the data block length, this design requires 3n encryption rounds. Moreover, the block size n of BISON is always odd, which is not convenient for operations performed on a byte level. In order to overcome these issues, we propose a new block cipher, named DBISON, which more efficiently employs the ideas of double layers typical to the BISON-like construction. More precisely, DBISON divides the input into two parts of size n/2 bits and performs the round computations in parallel, which leads to an increased encryption speed. In particular, the data block length n of DBISON can be even, which gives certain additional implementation benefits over BISON. Furthermore, the resistance of DBISON against differential and linear attacks is also investigated. It is shown the maximal differential probability (MDP) is 1/2n-1 for n encryption rounds and that the maximal linear probability (MLP) is strictly less than 1/2n-1 when (n/2+3) iterative encryption rounds are used. These estimates are very close to the ideal values when n is close to 256.

CONEAT SUBMODULES AND CONEAT-FLAT MODULES

  • Buyukasik, Engin;Durgun, Yilmaz
    • 대한수학회지
    • /
    • 제51권6호
    • /
    • pp.1305-1319
    • /
    • 2014
  • A submodule N of a right R-module M is called coneat if for every simple right R-module S, any homomorphism $N{\rightarrow}S$ can be extended to a homomorphism $M{\rightarrow}S$. M is called coneat-flat if the kernel of any epimorphism $Y{\rightarrow}M{\rightarrow}0$ is coneat in Y. It is proven that (1) coneat submodules of any right R-module are coclosed if and only if R is right K-ring; (2) every right R-module is coneat-flat if and only if R is right V -ring; (3) coneat submodules of right injective modules are exactly the modules which have no maximal submodules if and only if R is right small ring. If R is commutative, then a module M is coneat-flat if and only if $M^+$ is m-injective. Every maximal left ideal of R is finitely generated if and only if every absolutely pure left R-module is m-injective. A commutative ring R is perfect if and only if every coneat-flat module is projective. We also study the rings over which coneat-flat and flat modules coincide.

ADDITIVE MAPS OF SEMIPRIME RINGS SATISFYING AN ENGEL CONDITION

  • Lee, Tsiu-Kwen;Li, Yu;Tang, Gaohua
    • 대한수학회보
    • /
    • 제58권3호
    • /
    • pp.659-668
    • /
    • 2021
  • Let R be a semiprime ring with maximal right ring of quotients Qmr(R), and let n1, n2, …, nk be k fixed positive integers. Suppose that R is (n1+n2+⋯+nk)!-torsion free, and that f : 𝜌 → Qmr(R) is an additive map, where 𝜌 is a nonzero right ideal of R. It is proved that if [[…[f(x), xn1], …], xnk] = 0 for all x ∈ 𝜌, then [f(x), x] = 0 for all x ∈ 𝜌. This gives the result of Beidar et al. [2] for semiprime rings. Moreover, it is also proved that if R is p-torsion, where p is a prime integer with p = Σki=1 ni and if f : R → Qmr(R) is an additive map satisfying [[…[f(x), xn1], …], xnk] = 0 for all x ∈ R, then [f(x), x] = 0 for all x ∈ R.