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ADDITIVE MAPS OF SEMIPRIME RINGS SATISFYING

AN ENGEL CONDITION

Tsiu-Kwen Lee, Yu Li, and Gaohua Tang

Abstract. Let R be a semiprime ring with maximal right ring of quo-

tients Qmr(R), and let n1, n2, . . . , nk be k fixed positive integers. Sup-
pose that R is

(
n1 +n2 + · · ·+nk

)
!-torsion free, and that f : ρ→ Qmr(R)

is an additive map, where ρ is a nonzero right ideal of R. It is proved

that if
[[
. . . [f(x), xn1 ], . . .

]
, xnk

]
= 0 for all x ∈ ρ, then

[
f(x), x

]
= 0

for all x ∈ ρ. This gives the result of Beidar et al. [2] for semiprime rings.

Moreover, it is also proved that if R is p-torsion, where p is a prime integer

with p =
∑k

i=1 ni, and if f : R → Qmr(R) is an additive map satisfying[[
. . . [f(x), xn1 ], . . .

]
, xnk

]
= 0 for all x ∈ R, then

[
f(x), x

]
= 0 for all

x ∈ R.

1. Results

Throughout the paper, unless specially stated, R denotes a semiprime ring
(i.e., for a ∈ R, aRa = 0 implies a = 0) with maximal right ring of quotients
Qmr(R). The center of Qmr(R), denoted by C, is called the extended centroid
of R. It is known that C is a commutative regular self-injective ring. Moreover,
C is a field if and only if R is a prime ring (i.e., for a, b ∈ R, aRb = 0 implies
either a = 0 or b = 0). We refer the reader to the book [3] for details.

For a, b ∈ R, we let [a, b] := ab − ba, the additive commutator of a and
b. Given an additive subgroup S of R, a map f : S → R is called m-power
commuting if [f(x), xm] = 0 for all x ∈ S, where m is a fixed positive integer.
A 1-power commuting map is called a commuting map for brevity. Additive
m-power commuting maps of prime rings or semiprime rings have been studied
by a lot of scholars in the literature (see [2, 4–12,15,18,21–24,26] etc.).
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To state the main result of the paper we follow some notations from [2].
Given positive integers n1, . . . , nk, we let n = (n1, n2, . . . , nk) and define [x, yn]k
inductively as follows:

[x, yn]0 = x, [x, yn]1 = [x, yn1 ] and
[
x, yn

]
t+1

=
[
[x, yn]t, y

nt+1
]

for t = 1, 2, . . . , k − 1. If n1 = n2 = · · · = nk = m, then we shall write [x, ym]k
in place of [x, yn]k. In 1997 Beidar et al. [2] proved the following.

Theorem 1.1. Let R be a prime ring with ρ a nonzero right ideal and n =
(n1, n2, . . . , nk). Suppose that f : ρ → RC is an additive map satisfying the
Engel condition

[
f(x), xn

]
k

= 0 for all x ∈ ρ. Then [f(x), x] = 0 for all x ∈ ρ
provided that either char (R) = 0 or a prime p > n1 + n2 + · · ·+ nk.

Some generalizations of the theorem above have been obtained for n!-torsion
free semiprime ringsR with an additive map f : R→ R. M. Fošner et al. proved
that if [f(x), x]n = 0 for all x ∈ R, then f is commuting (see [12, Theorem 1]).
Also, A. Fošner and Nadeem-ur-Rehman proved that if [f(x), xn] = 0 for all
x ∈ R, then f is commuting (see [11, Main Theorem]). The first aim of the
paper is then to extend Theorem 1.1 to semiprime rings in its full generality.
Applying the same argument given in the proof of Theorem 1.1, we remark
that Theorem 1.1 keeps true when the additive map f : ρ → RC is replaced
by f : ρ→ Qmr(R). The fact will be used in our proofs. We are now ready to
state the first main theorem of the paper.

Theorem 1.2. Let R be an
(
n1 + n2 + · · ·+ nk

)
!-torsion free semiprime ring,

and let f : ρ → Qmr(R) be an additive map, where ρ is a nonzero right ideal
of R. Suppose that

[
f(x), xn

]
k

= 0 for all x ∈ ρ, where n = (n1, n2, . . . , nk).

Then
[
f(x), x

]
= 0 for all x ∈ ρ.

Given a right ideal ρ of a semiprime ring R, T.-K. Lee and T.-C. Lee gave a
complete characterization of additive commuting maps from ρ to Qmr(R) (see
[20, Theorem 1]). Moreover, Theorem 1.2 is false if we drop the assumption
that R is

(
n1 +n2 + · · ·+nk

)
!-torsion free (see [21, Example 1.2]). The second

goal of the paper is to study an exceptional case of Theorem 1.2 as follows.

Theorem 1.3. Let R be a semiprime ring with pR = 0, where p is a prime inte-
ger. Suppose that f : R→ Qmr(R) is an additive map satisfying

[
f(x), xn

]
k

=

0 for all x ∈ R, where n = (n1, n2, . . . , nk) and p =
∑k
i=1 ni. Then

[
f(x), x

]
=

0 for all x ∈ R.

2. Proofs

Throughout, R denotes a semiprime ring with extended centroid C. The
set B of all idempotents of C forms a Boolean algebra with respect to the
operations e+̇h := e + h − 2eh and e · h := eh for all e, h ∈ B. It is complete
with respect to the partial order e ≤ h (defined by eh = e) in the sense that
any subset S of B has a supremum and an infimum.



ADDITIVE MAPS OF SEMIPRIME RINGS SATISFYING AN ENGEL CONDITION 661

A subset {eν ∈ B | ν ∈ Λ} of B is called orthogonal if eνeµ = 0 for ν 6= µ
and is a dense subset if

∑
ν∈Λ eνC is an essential ideal of C. A subset T of

Qml(R), where 0 ∈ T , is called orthogonally complete in the following sense.
Given any dense orthogonal subset {eν ∈ B | ν ∈ Λ} of B, there exists a one-to-
one correspondence between T and the direct product

∏
ν∈Λ Teν via the map

x 7→ 〈xeν〉 for x ∈ T . Therefore, given any subset {aν ∈ T | ν ∈ Λ}, there exists

a unique a ∈ T such that a 7→ 〈aνeν〉. The element a is written as
∑⊥
ν∈Λ aνeν

and is characterized by the property that aeν = aνeν for all ν ∈ Λ.

Given a subset T of Qmr(R), we denote by T̂ the intersection of all or-

thogonally complete subsets of Qmr(R) containing T . It is known that T̂ is
itself orthogonally complete and is called the orthogonal completion of T (see
[3, Chapter 3]).

In view of [3, Proposition 3.1.10], Qmr(R) is orthogonally complete. More-
over, P is a minimal prime ideal of Qmr(R) if and only if P = mQmr(R) for
some m ∈ Spec(B), the spectrum of B (i.e., the set of all maximal ideals of B)
(see [3, Theorem 3.2.15]). In particular, it follows from the semiprimeness of
Qmr(R) that

⋂
m∈Spec(B) mQmr(R) = 0. We refer the reader to the book [3]

for details. Throughout, we set Q := Qmr(R) for simplicity of notation.
To begin with the proof of Theorem 1.2, we need the following, which has

the same proof as that of [19, Lemma 2.1].

Lemma 2.1. Let R be an m!-torsion free semiprime ring, where m is a positive
integer. Then char (Q/mQ) = 0 or a prime p > m for any m ∈ Spec(B).

Given an ideal I of R, for q ∈ R it is clear that qI = 0 if and only if Iq = 0.
Thus, AnnR(I) := {q ∈ R | qI = 0} is an ideal of R. Moreover, an ideal I of
R is essential if AnnR(I) = 0. The following is well-known (see, for instance,
[18, Lemma 2.10] with replacing the Martindale symmetric ring of quotients of
R by Qmr(R)).

Lemma 2.2. Every annihilator ideal of Q is generated by one central idempo-
tent.

Let A,B be subsets of R. We let [A,B] (resp. AB) denote the additive
subgroup of R generated by all [a, b] (resp. ab) for a ∈ A and b ∈ B. If
A = {a}, we write [a,B] (resp. aB) in place of [{a}, B] (resp. {a}B). The
following is a special case of [17, Main Theorem].

Lemma 2.3. Let ρ be a right ideal of R, a ∈ R. Suppose that
[
a, xn

]
k

= 0 for

all x ∈ ρ, where n = (n1, n2, . . . , nk). Then [ρ,R][a,R] = 0.

Proof. Let a, x ∈ R and let s, t be positive integers. Suppose that
[
[a, xs], xt

]
=

0. Then
[
[a, xs], xst

]
= 0 and so

[
[a, xst], xs

]
= 0. Thus,

[
[a, xst], xst

]
=

0. Since
[
a, xn

]
k

= 0 for all x ∈ ρ where n = (n1, . . . , nk), it follows that[
a, xm]k = 0 for all x ∈ ρ, where m := n1 · · ·nk. In view of [17, Main Theorem],

we have [ρ,R][a,R] = 0. �
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We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. In view of Lemma 2.2, there exists e = e2 ∈ C such that
AnnQ

(
Q[ρ,Q]Q

)
= eQ. Since C is a commutative self-injective ring, C is a

direct summand of the C-module Q. There exists a C-submodule W of Q such
that Q = C ⊕W . Let π : Q → Q be the projection along W . In particular, π
is a C-module map. Set e′ := 1− e. Let g : ρ→ Q be the additive map defined
by

g(x) = π
(
e′f(x)

)
for all x ∈ ρ. Then g(x)− e′f(x) ∈ C for all x ∈ ρ. Therefore,

[
g(x), xn

]
k

= 0
for all x ∈ ρ.

ρ̂ = {
∑
α∈I

⊥
xαeα |xα ∈ ρ,

∑
α∈I

eαC is a dense ideal of C}.

Then ρ̂ is a right ideal of R̂ and Qmr(R̂) = Q. We claim that g can be extended
to an additive map, denoted by ĝ, from ρ̂ to Q by

ĝ
(∑
α∈I

⊥
xαeα

)
=
∑
α∈I

⊥
g
(
xα
)
eα(1)

for all xα ∈ ρ. To prove ĝ to be well-defined, it suffices to claim that if xαeα = 0,
where xα ∈ ρ and eα ∈ B, then g

(
xα
)
eα = 0. Indeed, let y ∈ ρ. Multiplying[

f(xα + y), (xα + y)n
]
k

= 0 by eα, we get
[
f(xα + y), yneα

]
k

= 0. Since[
f(y), yn

]
k

= 0, we see that[
f(xα)eα, y

n
]
k

= 0.(2)

Since R and Q satisfy the same GPIs (see [3, Theorem 6.4.1]) and ρR ⊆ ρ ⊆ ρQ,
(2) holds for all y ∈ ρQ. Applying Lemma 2.3 to (2), we get[

ρQ,Q
][
f(xα)eα, Q

]
= 0 and so

[
ρ,Q2

][
f(xα)eα, Q

]
= 0.

This implies that Q
[
ρ,Q

]
Q
[
f(xα)eα, Q

]
= 0. Thus,[

f(xα)eα, Q
]
⊆ AnnQ

(
Q[ρ,Q]Q

)
= eQ

and so
[
e′f(xα)eα, Q

]
= 0. That is, e′f(xα)eα ∈ C. Hence, π

(
e′f(xα)

)
eα = 0,

i.e., g(xα)eα = 0, as asserted. This proves that ĝ is well-defined. Clearly, the
map ĝ : ρ̂→ Q is additive.

Let x ∈ ρ̂. There exists a dense orthogonal subset {eν ∈ B | ν ∈ Λ} of B such

that x =
∑⊥
ν∈Λ xνeν , where xα ∈ ρ for α ∈ Λ. It follows from (1) that[

ĝ(x), xn
]
k

=
∑
α∈Λ

⊥[
g(xα), xnα

]
k
eα = 0.(3)

Let m ∈ Spec(B). We claim that ĝ
(
ρ̂∩mR̂

)
⊆mQ. Indeed, let x ∈ ρ̂∩mR̂

and y ∈ ρ̂. Then hx = 0 for some h ∈ B \m. By (3) we have[
ĝ(x+ y), (x+ y)n

]
k

= 0.
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Multiplying it by h, we get
[
ĝ(x + y), ynh

]
k

= 0 and so
[
ĝ(x)h, yn

]
k

= 0. As

before, it follows from Lemma 2.3 that
[
ρ̂, R̂

][
ĝ(x)h,Q

]
= 0. This implies that

Q
[
ρ̂, R̂

]
Q
[
ĝ(x)h,Q

]
= 0 and so

Q
[
ρ,Q

]
Q
[
ĝ(x)h,Q

]
= 0.

Hence,
[
ĝ(x)h,Q

]
⊆ eQ and so

[
ĝ(x)h,Q

]
= 0, since ĝ(x) ∈ e′Q. Thus,

ĝ(x)h ∈ C ∩W = {0}. That is, ĝ(x) ∈mQ, as asserted.
This means that ĝ canonically induces the following additive map

ĝm :
(
ρ̂+ mR̂

)
/mR̂→ Q/mQ,

which is defined by ĝm
(
x
)

= ĝ(x) for x ∈ ρ̂, where

x := x+ mR̂ ∈
(
ρ̂+ mR̂

)
/mR̂.

Clearly, by (3) we have
[
ĝm(x), xn

]
k

= 0 for all x ∈
(
ρ̂ + mR̂

)
/mR̂. Note

that
(
ρ̂ + mR̂

)
/mR̂ is a right ideal of the prime ring R̂/mR̂ and Q/mQ is

contained in the maximal right ring of quotients of R̂/mR̂. In view of Lemma

2.1, char (R̂/mR̂) = 0 or a prime p > n1 + · · ·+nk. It follows from Theorem 1.1

that
[
ĝm(x), x

]
= 0 for all x ∈

(
ρ̂ + mR̂

)
/mR̂. In particular, [g(x), x] ∈ mQ

for all x ∈ ρ.
Note that

⋂
m∈Spec(B) mQ = 0. We get [g(x), x] = 0 for all x ∈ ρ. That is,

[π(e′f(x)), x] = 0 for all x ∈ ρ. Since e′f(x)− π(e′f(x)) ∈ C for x ∈ ρ, we get
[e′f(x), x] = 0 and so

0 = [e′f(x), x] = [f(x), x]− [ef(x), x] = [f(x), x]

for all x ∈ ρ, because [ef(x), x] ∈ [eQ, ρ] = 0 (by the fact that AnnQ
(
Q[ρ,Q]Q

)
= eQ). That is, [f(x), x] = 0 for all x ∈ ρ, as desired. �

We next turn to the proof of Theorem 1.3. The first step is to handle the
prime case by beginning with a preliminary lemma. For x ∈ R, a prime ring
with extended centroid C, we define deg(x) to be the minimal algebraic degree
over C if x is algebraic over the field C and deg(x) = ∞, otherwise. For a
subset T of R, we define deg(T ) = sup{deg(t) | t ∈ T}. It is known that, for a
positive integer m, deg(R) ≤ m if and only if dimC RC ≤ m2. We denote by
Sn the permutation group on the set {1, 2, . . . , n}. The following is well-known.
We give its statement without proof. We denote by Z(R) the center of R.

Lemma 2.4. Let R be a semiprime ring, a ∈ R. If
[
a, [R,R]

]
= 0, then

a ∈ Z(R).

Lemma 2.5. Let R be a prime PI-ring with center Z(R), a ∈ R, and char (R)
= p > 0. Suppose that

(4)
∑
σ∈Sp

[[
. . . [a, xσ(1)xσ(2) · · ·xσ(m1)], . . .

]
, xσ(mk−1+1)xσ(mk−1+2) · · ·xσ(mk)

]
= 0
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for all xi ∈ R, where n1, . . . , nk are positive integers with p =
∑k
i=1 ni and

where m1 := n1 and mj := mj−1 + nj for j = 2, . . . , k. Then a ∈ Z(R).

Proof. To prove a ∈ Z(R) we may assume that R is noncommutative. By
Posner-Rowen’s theorem, RC ∼= Mn(D), where D is a finite dimensional central
division C-algebra (see [27, Corollary 1]). Choose F to be a maximal subfield
of D. Note that F = C if D is a field, and C is an infinite field, otherwise. It
is known that RC ⊗C F ∼= Mm(F ) for some m > 1, and, applying a standard
argument, we get that (4) holds for all xi ∈ RC ⊗C F . Thus, we may assume
from the start that R = Mm(F ) for some field F and some m > 1.

For the case that p = 2, we get [a, xy+yx] = 0 for all x, y ∈ R or
[
[a, x], y

]
+[

[a, y], x
]

= 0 for all x, y ∈ R. Since char(R) = 2, the latter case implies that[
a, [x, y]

]
= 0 for all x, y ∈ R. In either case, we get

[
a, [R,R]

]
= 0. In view of

Lemma 2.6, we have a ∈ F , as desired.
From now on, we assume that p > 2. We first consider the case that k = 1.

That is,

(5)
[
a,
∑
σ∈Sp

xσ(1) · · ·xσ(p)

]
= 0

for all xi ∈ R. Replacing x1 by x and xj by a fixed idempotent e for j > 1 in
(5), we get

(6)
[
a, (p− 1)!(xe+ ex) + (p− 2)(p− 1)!exe

]
= 0

for all x ∈ R. Multiplying both sides of (6) by 1− e and applying the fact that
char(R) = p, we get (1− e)aex(1− e) = (1− e)x(1− e)ae for all x ∈ R. In view
of [25, Theorem 1], (1− e)ae ∈ F (1− e), implying that (1− e)ae = 0. Since e
is an arbitrary idempotent of R, replacing e by 1− e, we also get ea(1− e) = 0.
Therefore, [a, e] = 0. Note that R is generated by idempotents as a vector
space over F . This implies that a ∈ F , as desired.

We next assume that k > 1. Note that

m1 := n1 and mj := mj−1 + nj

for j = 2, . . . , k. Thus, mk = p. For σ ∈ Sp, by hypothesis we have∑
σ∈Sp

Aσ = 0,

where

(7) Aσ :=
[
Bσ, Cσ

]
,

where

Bσ :=
[[
. . . [a, xσ(1)xσ(2) · · ·xσ(m1)], . . .

]
, xσ(mk−2+1)xσ(mk−2+2) · · ·xσ(mk−1)

]
and

Cσ := xσ(mk−1+1)xσ(mk−1+2) · · ·xσ(mk).
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Given an idempotent e ∈ R, let xi = e for i = 2, . . . , p. Suppose that
(1− e)Aσ(1− e) 6= 0. Then we have either σ(mk−1 + 1) = 1 or σ(mk) = 1, and
in this case,

Bσ = [a, e]k−1, and Cσ = ex1, x1e or x1,

where Cσ = x1 occurs only when nk = 1.

Case 1: nk > 1. Therefore, we get

0 =
∑
σ∈Sp

(1− e)Aσ(1− e) = (p− 1)!(1− e)
[
[a, e]k−1, ex1 + x1e

]
(1− e).

Since p is not a divisor of (p− 1)!, this implies

(1− e)[a, e]k−1ex1(1− e) = (1− e)x1e[a, e]k−1(1− e)(8)

for all x1 ∈ R. In view of [25, Theorem 2(a)], either (1−e)[a, e]k−1e ∈ F (1−e)
or e[a, e]k−1(1−e) ∈ F (1−e); that is, either (1−e)[a, e]k−1e = 0 or e[a, e]k−1(1−
e) = 0. In view of (8), if (1− e)[a, e]k−1e = 0, we get e[a, e]k−1(1− e) = 0, and
conversely. Thus we get

(1− e)[a, e]k−1e = 0 = e[a, e]k−1(1− e).(9)

However, [a, e]k−1 = ae−ea if k−1 is odd, and [a, e]k−1 = [a, e]2 = ae−2eae+ea
if k − 1 is even. It follows from (9) that ea = eae = ae and so [a, e] = 0. Since
R is generated by idempotents as a vector space over F , we have a ∈ F , as
desired.

Case 2: nk = 1. Therefore, we get

0 =
∑
σ∈Sp

(1− e)Aσ(1− e) = (p− 1)!(1− e)
[
[a, e]k−1, x1

]
(1− e).

Applying an analogous argument as given in Case 1, we can conclude that
a ∈ F . �

Let Rn := {(x1, . . . , xn) |xi ∈ R for i = 1, . . . , n}. A map π : Rn → R is
called an n-additive map if, for i = 1, . . . , n, we have

π(x1, . . . , xi−1, xi + x′i, xi+1, . . . , xn)

= π(x1, . . . , xi−1, xi, xi+1, . . . , xn) + π(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)

for all xi, x
′
i ∈ R. The following lemma is essentially well-known and is referred

to [16, pages 15–17], [14, Lemma 1] and [13, Lemma 2].

Lemma 2.6. Let π : Rn → R be an n-additive map. If π(x, x, . . . , x) = 0 for
all x ∈ R, then

∑
σ∈Sn

π
(
xσ(1), xσ(2), . . . , xσ(n)

)
= 0 for all xi ∈ R.

Proof of Theorem 1.3. Applying an analogous argument as given in the proof
of Theorem 1.2 (in fact, it is easier), we must only prove the prime case. That is,
we may assume that R is a noncommutative prime ring with char (R) = p > 0.

Suppose first that char (R) = 2. Then either [f(x), x2] = 0 for all x ∈ R
or
[
[f(x), x], x

]
= 0 for all x ∈ R. In either case, [f(x), x2] = 0 for all x ∈ R.
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In view of [15, Theorem 1.5], [f(x), x] = 0 for all x ∈ R, as asserted. Suppose
next that char (R) = p > 2. We separate the proof into two cases.

Case 1: R is not a PI-ring. In this case, deg (R) =∞. By hypothesis,
p∑
i=1

xifi(x)xp−i = 0

for all x ∈ R, where fi’s are additive maps of R, 0 ≤ i ≤ p, with f0 = f
and fp := (−1)kf . Invoking [1, Theorem 4.4], there exist a, b ∈ Qmr(R), and
additive maps µ, ν : R→ C such that f0(x) = xa+µ(x) and fp(x) = bx+ ν(x)
for all x ∈ R. Since f0 = f and fp = (−1)kf , we get xa + (−1)k+1bx ∈ C for
all x ∈ R. Since R is not a PI-ring, R is not commutative. It is easy to prove
that a = (−1)kb ∈ C. Thus, f is commuting.

Case 2: R is a PI-ring. In this case, Qmr(R) = RC. Set m1 := n1 and mj :=

mj−1 +nj for j = 2, . . . , k. Set ` := 1 +
∑k
i=1 ni = 1 + p and let π : R` → R be

defined as

π
(
x1, x2, . . . , x`

)
=
[[
. . . [f(x1), x2x3 · · ·xm1+1], . . .

]
, xmk−1+2xmk−1+3 · · ·xmk+1

]
for all xi ∈ R. Since

[
f(x), xn

]
k

= 0 for all x ∈ R, we get π(x, x, . . . , x) = 0
for all x ∈ R. In view of Lemma 2.6, we get

(10)

∑
σ∈Sp+1,σ(1)=1

[[
. . . [f(x1), xσ(2)xσ(3) · · ·xσ(m1+1)], . . .

]
,

xσ(mk−1+2)xσ(mk−1+3) · · ·xσ(mk+1)

]
+

∑
σ∈Sp+1,σ(1) 6=1

[[
. . . [f(xσ(1)), xσ(2)xσ(3) · · ·xσ(m1+1)], . . .

]
,

xσ(mk−1+2)xσ(mk−1+3) · · ·xσ(mk+1)

]
= 0

for all x1, . . . , xp+1 ∈ R. Let β ∈ Z(R), the center of R. It follows from (10)
that

(11)

∑
σ∈Sp+1,σ(1)=1

[[
. . . [f(βx1)− βf(x1), xσ(2)xσ(3) · · ·xσ(m1+1)], . . .

]
,

xσ(mk−1+2)xσ(mk−1+3) · · ·xσ(mk+1)

]
= 0

for all x1, . . . , xp+1 ∈ R. In view of Lemma 2.5, f(βx1) − βf(x1) ∈ C for all
x1 ∈ R. Write RC = W ⊕ C as C-spaces, where W is a C-subspace of RC.

Let π : R → RC be the projection along W , and let f̃ := π ◦ f . Then f̃ is a

Z(R)-linear map satisfying
[
f̃(x), xn

]
k

= 0 for all x ∈ R. Set w := n1 · · ·nk
and choose a positive integer v such that pv ≥ k. Then

[
f̃(x), xw

]
k

= 0

and so
[
f̃(x), xw

]
pv

= 0; that is,
[
f̃(x), xwp

v]
= 0 for all x ∈ R. In view of
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[21, Theorem 1.1],
[
f̃(x), x] = 0 for all x ∈ R, and so

[
f(x), x] = 0 for all x ∈ R

since char (R) = p > 2. �
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