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1. Introduction

Throughout this paper, we assume that every ring and ring homorphism will be understood
to mea1 commutative ring with unit element and unitary homomorphism, respectively.

Let It be a ring and let X be the set of all prime ideals of R. Then X becomes a topological
space endowed with the Zarski topology or the constructible topology, ({I}). Let X. and X
denote the set X endowed with the Zarski topology and the constructible topology, respectively.

In this note, we study homeomorphisms on X; to X. and X, to the maximal spectrum Max
(C(X)) for some conditions on the ring R, where C(X) is the ring of all real valued continuous
functiort on the prime spectrum X,

In the paragraph 3, we shall prove that X, and Max(C(X)) are homeomorphic when R/N is
regular where N is the nilradical of A. In the pragraph 4, we shall find some necessary
and suf’icient conditions that the arski topology and the constructible topology on X are-the

same.

2. Prelimiraries

Let R be a commutative ring with unit element. The ring R is called reguler, if every pincipal
ideal of the ring is idempotent. We have the following properties for the regular ring.

Proposition 1. Let R be a regular ring, then every prime ideal of maximal.

Proof. Let P be a prime ideal and a an element of R such that agZP. Since R is regular,
(a)=(a?), whence there exists an element x such that a?x=a. Then a(1—ax) =0<P. Since 2#P,
1-ax=»>&P. That is ax+p=1 for some x&R and p=P, Whence (a,P)=(1). Therefore
P is maximal.

Proposition 2. Let N be the nilradical of a ring R. If R/N is regular, then every prime ideal
of R is maximal.

Proof. Let P be a prime ideal of R and let ac£P. Since R/N is regular, (8) =(3%), and hence
there exists an x&R such that a=a’k%. Therefore a=xa?+y for some y&=N. a(l—xa)r=y*=0
for some positive integer n. Hence 1—xac<P, Hence (P,a)=1, therefore P is maximal.

Proposition 3. Let R be a ring, A an ideal of R, M an R-module. Then R/AQzrM is isom-
orphic to» M/AM.

o
Proof. The sequence O—‘A—*R—J»R/A—»O is exact, where i is the inclusion and j is the natural



) o
homomorphism. Then A®ML@LR®M—@LR/A®M—>O is exact. Hence

R/AQM=RE@M/ker(i®1) =RQM/im (iQ1).

Since f: ARaM—M detined by f(a®m)=am for a&R and m&M is an isomorphism and
fim(i&®1) =AM, im(iRQ1)=AM. Therefore R/AR:MZM/AM.

Let S be a multiplicative subest of a ring R. The ring of fractions of R with respect to S is
denoted by S-IR. If S=R—P for a prime ideal P of R, we write R, for S~IR, which is a local
ring. If S= {f"} nz0 for fER, we write Rt for S~IR. There is a canonical homomorphism ¢: R—S~I1R
given by ¢(x)=x/1. If A is an ideal of R, we define A*=AS"R={i(a/1)[acsA, t=S-IR},
which is called the extension of A in S™IR. On the otherhand if B is an ideal of SR, we
define B¢=¢-1(B), which is called the coniraction of B to R. If fR—R’ is a ring homomorphism
and S is a multiplicative subset of R, then f(S) is multiplicative subest of R’. We write S™'R’
for f(S)7IR. If S=R—P, for a prime ideal P of R, we write R’; for SR’ and AR’, for f(A)R’.

There exists a bijection between the set of prime ideals of R whose intersection with the
multiplicative subset S of R is empty and the se: of prime ideals of SR, ({2)).

Let M be an R module and let S be a mul*ipiicative subset of R then we derote the S™IR-
module of fractions as S~!M. We M, for $~'M when S=R—P for a prime ideal P of R, and

M; when S= {f"} 30 for fER. ‘

Proposition 4. Let M be an R-module. Taen the S 1R-medulz $-IM and S57'1R@rM are

isomorphic: i.e. there exists a unique isomv.;hicie HESTIRReM-+M for which
f(a/s)@m) ==am/s fcr 2l 2=A, meM, &8 [EV I

Proof. The mapping S™!R x M—&~!M definzd by (a/s,m) j-~am/s is R-bilinear, and therefore
by the universal property of the tensor prodict induces an R-homorphism £:51R@rM—S-M
satisfying (i). Clearly f is surjective, and is wnniquely defined by {i).

Let 3 (ai/s:))@m: be any element of SIREM. If s=Is;&8S, ti=lixjs; we have

Ti(ai/s) @rai =T (aiti/ ) Emi=Ti(1/s) Qartimi
= (1/5) Q@ Ziastim;,
o that every element of ST'R®M is of the forrn (1/3)@w. Suppose that {((1/8)@m)=0.
Then m/s=0, hence tm=0 for some i€=S, and thu.efore (1/s)(0m= (t/st) @m:=(1/st) Ktm=
(1/st)R0=0. Hence f is injective and therefore an isomorphism.

Remark 1. Let I be a directed set and let #i={in;,1n;) be a direct system of R-modules over
the directed set 1. Then we have the direct limit of the direct sysiern M consisting the module
M and the family of homomorphisms gi:Mi—M, which we denote M=Ilim Mi For this direct
limit, we have the following properties. Every element of M can be written in the form 1 (x1)
for some i<l and xi&Mu If pi(x:) =0, then there exists j=i such that w;(x:)=0 in Mj

Remark 2. Keeping the same notation as in Remark I,let N be any R-module. Then(M:i®N,
#4:;Q1) is a direct system; let P=£IE(I\4:’®N) be its direct limit. For each i, we have a
homomorphism #®&1: MiXN—M;®N. Then we have the unique homomorphism ¢:P—M®N by
the definition of the direct limit. We can easily prove that the homomorphism ¢ is an isomorphism,
so that MM;@N);(]imM;)@N, ().



Remark 3. Let {Ri}ia be a family of rings indexed by a directed set I, and for each pair
‘=i in 1, let a;; Ri—R; be a ring homomorphism such that ay; is the identity mapping of R;
for all <], and ap=apa;; whenever ;=j=k Regarding each R as a Z-module where Z is the
.ing of integers, we can then form the direct limit R=lim Ri. Then R inherits a ring structure
from the R; so that the mappings Ri—R are ring homt;r-x-l-&phisms. The ring R is the direct limit
of the system(R;, ai;). For this direct limit we can easily prove the following results by Rem-
ark 1. If R=0 then Ri=0 for some i€l

Remark 4. Let {Ri} i<l be a family of A-algebras. For each finite subset J of 1 let R; denote
the tensor product (ovord) of the R; for i=J. If ]’ 1s another finite subset of I and JCZJ' there
is a canonical /-algebra homomorphism R;j—R;’. Let R denote the direct limit of the rings R;
as J runs through all finite subsets of I. The ring R has a natural A-algebra structure for
erhich the homomorphisms Ry—R)’ are A-algebra homomorphisms. The A-algebra R is the tensor
oroduct of the family (Ri}ier

3, Prime spectrum of z ring

For each subset E of a ring R, let V(E) denote the set of all prime ideals of K waich
contain L. Then the following are easily proved.

(1) If Eis a subrst of R, A is the ideal generated by E, and r(A) is the radical of A, ther

VIEY=V(A =V { (.},

(M If (B s any forcily of subse's R, then V{(UiaED) NiaV(E:).

(3) 1f A,B are ideals oi R, tnen V(A;UV(B)=V(ANB)=V{A3).

Thease results show ihai the sets V(E} satisfy the axioms for closed seis in a topologicai
¢#3ace, The resulting iopolugy ‘o called the Zarski ropology. The topological space X is called
the prime spectrum of R, and is written Spec(R). Fer each {ER, let X; denote the complement
of V{{) in X=S8pec(R). The sets X, are open.

Proposition 5. The sets X; from a basis of open sets for the Zarski topclogy.

Proof. Let G be an open set and xEG, then X—G=V(E) for some subset of R, and x=£V(E).
#ence there exists an element f of E such that f&x. Then x&Xy. Hence Xy=X-V()CX~-V
{8) =G. Therefore {X;} form a basis of the topology.

Proposition 6, For any f&R, Xy is quasi-compact.

Procf. Let (Xs|i<I} te a basic open covering of Xz Then X;CUiaX;, whence V(£)D
NaViZpm) =V {{filz€}). Hence r({f:]i€]))>r(f), since the radical of an ideal is the intersec-
t:on of all prime .deals containing the ideal. Since f&r(f), there exists a positive ingeger n
cuch that f*<({fij 1)), whence {*=3% x:f; for some positive integer k and x;&A. Since(f")
=(Txf)C D), V=V () =V(Zxf) DV(S(E)) =V(U (f))=NV(f). Hence X;CUXr.
Therefore Xf is quasi-compact.

Proposition 7. For a ring R the following are equivalent:

(1) Every prime ideal of R is maximal.

(2) X=Spec(R) is a Ti-space.

Proof. (1)=>(2): Let{x} be a one point subset of X, Since x is a maximal ideal of R,V{x) =x,

hence [x} is closed, Therefore X is a Ti-space.
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(2)=(1); Let x be a prime ideal of R, then {x} is closed subset of X. Hence {x} = {x} =V (x).
Therefore x is maximal.

Proposition 8 Let N be the nilradical of a ring R. If R/N is regular, X=Spec(A) is
Hausdorff.

Proof. Let x,y be distinct two elements of X, then there exists an element f such that fey~x
or f&x—y. Suppose that {&y—x. Since R/N is regular, (})=(f?), whence there exists anm
element o of R such that {=af? where agx. Let af=e, then e&N, ey and &is an idempotent
of R/N and (8)=(}). Let 1—e=g, then gefy and egeEN, because § is also an idempotent of
R/N. Then yeEX,; and X;NX;=Xs;=¢. Hence X; and X, are disjoint neighbourhood of x and
y respectively. Therefore X is Hausdorff.

Let ¢: R—S be a ring homomorphism. Let X=Spec(R) and Y=Spec(S). If QEY, then
©™1(Q) is a prime ideal of R, i.e. a point of X. Hence ¢ induces a mapping ¢*: Y—X,

Proposition 9. The mapping ¢*: Y—X is continuous.

Proof. Let f be any element of R, then it is clear that ¢*1(Xs)=Y,y by the following
resulis:

Qep*1{(Xp)e=22p* Q) EXr &= (Q) =2 H Q) =20 () £Q&=2 QX (.

Therefore ¢* is continuous, sirce the inverse image of every basic open set Xy is open in Y.

Let R be a ring. The subspace of Spec(R) consisting of maximal ideals of R, with the induced
topology, is called the mazimal spectrum of R and is denoted by Max(R).

Let X=Spec(R) and let C(X) denote the ring of all real-valued continuous functions on X.
We can add and multiply functions in C(X) by adding and multiplying their values. Then
C(X) becomses a commutative ring with unit. We have the following property concerning C(X).

Theorem 1, Let X=Max(C(X)) be the maximal spectrum of C(X). If R/N is regular, then
we have an homeoworphism x.X—7Y, where N is the nilradical of R.

Proof. Since R/N is regular, X is Hausdorff compact space by Proposition 6 and 8 For each
x&X, let M, be the set of all f&C(X) such that f(x)=0. The ideal M: is maximal, because
it is the kernel of the surjective homomorphism C(X)—R which takes to f(x), where R is the
field of real numbers. Then we can define a mapping :X—%, ramly x|—M,.

Let M be any maximal ideal of C(X), and let V=V(M) be the set of common zeros of the
functions in M: that is,

V= x|xeX, f(x)=0 for all f&M}

Suppose that V is empty. Then for each x&X there exists f,&M such that f,(x) 0. Since f,
is continuous, there is an open neighbourhood U, of in X on which f. does not vanish. By
compactness a finite number of neighbourhoods, say Uz, Ux,...... Uz,, cover X. Let f=f%,+f2,
S ST +f%,. Then f does not vanish at any point of X, hence is a unit in C(X). But this
contradicts f&M, hence V is not empty.

Let x be a point of V. Then MCM, hence M=M, because M is maximal. Hence g is
surjective.

Since X is hausdorff and compact, X is normal. Hence by Urysohn’s lemma the continuous
functions separate the points of X. Hence x3xy—M,XxM,, and therefore u is injective.
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Let f€C(X), let Us=[x|xEX, f(x)=0} and let {y=MIMEX, fEM). Then u(U;)={
aud the open sets Us(resp. {Jjs) form a basis of the topology of X(resp. ¥) and therefore U is.
homeomorphism. '

4. Constructible topology on Spec(R).

We construct another topology on Spec(R) which we call the constructible topology on
Spec (R), and then we compare the topology with the Zarski topology in this paragraph.

Theorem 2, Let f:R—R’ be a ring homomorphism, let P be a prime ideal of R and let
S=R—P. Then the subspace f*-1(P) of Y (=Spec(R’)) is homeomorphic to Spec(R’p/PR’p)=
Spec (k(p)@rR’), where f* is a mapping on Y to X(=Spec(R)) defined by f*(Q)=£-1(Q),
and k(p) is the residue field of the local ring Re.

Proof. For any Q&f**1(P), S7!Q is the prime ideal of R’p and PR'pS~1Q. Hence S~1Q/PR’p-
is a prime ideal of R’p/PR’s. Let us define the mapping ¢:f**1(P)—Sped(R'p/PR’p) by ¢(Q) :=
S*1Q/PR’p for any Q=f*1(P), We will accomplish the proof by a series of reduction.

(a) Let Q'=Spec(R'p/PR’p) be any prime ideal of R's/PR’p and let Q"' =g-1(Q’) for the natural
komomorphism g:R’»—R’p/PR’p. Then Q' is a prime ideal of R’p and there exists a prime ideal
Q of R’ such that $71Q=Q", and then $1Q/PR'»=Q’ and {~1(Q) NS=¢. Let {~1(Q) =P, then
P'NS=¢, whence P'CP. On the otherhand, since Q" DOPR’p and Q=¢~1(Q"") Dp~1(PR's) DI (P)
for the canonical homomorphism ¢:R'—R’p by defined ¢@(x)=x/1, P'OP. Therefore P’'=P,
whence Qesf*-1(P), and ¢(Q) =S'Q/PR’=Q’. Therefore ¢ is surjective.

(L) If () =¢(Q2) for any Qi,Qq in f¥71(P), then S7'Qi/PR’p=S"1Qs/PR’p, whence S$-1Q,=
S-1Qq, Q'=Q2% Therefore ¢ is injecti.c.

(¢) Let C be any closed subset .t f*-1(P), then there exists an ideal B of R’ such thatC=
V(B)NH*-1(P). We will prove (V(B)Nf*1{P))=V(S~IB/PR’p). If Q' €4(V(B)N{*1(P)), Q
=¢(Q) for some prime ideal J of R’ such that BCQ and {-1(Q)=P. Then S-1BCS-1Q and
Q' =¢(Q) =S-1Q/PR’»DS™!B/PR’p, whence Q'=V(S-1B/PR’s). ance H(VBYN*1(P)) CV
(S™B/PR’p). Conversely, if Q' €V (S-1B/PRs’), Q' DS-1B/PR’p. Let Q" =g-1(Q’) for the natural
homomorphism g: R’»p—R’p/PR’,, then Q' is a prime ideal of R’ and @' =Q"'/PR’»D S~1/PR’s,
whence Q'OS™1B. Let Q' =¢~1(Q"') for the canonical homomorphism ¢: R’—R’p defined by
9 (x)=x/1. Then Q=90 1(Q"")Dp~1(PR’p) Df(P), whence {1(Q)DOP. On the otherhand, since
QNE(S)=¢, -1(Q)CP. Hence f~1(Q)=P.Since Q"' DS"1B and Q=¢"1(Q"")D¢~1(S"1B)DB, Q&
V(B). Therefore Q=V(BIN*1(P) and ¢(Q) =Q'=¢(V(B) N{*-1(P)). Therefore V(S-1B/PR’)
CH(V(B)N{*1(P)), whence ¢(V(B)N*1(P))=V(S'B/PR’s). Therefore ¢ is the closed
mapping.

(d) Let D be a closed subset of Spec(R’p/PR’p), then there exists an ideal C of R’p/PR’»
such that D=V(C). Let B'=g-1(C) for the natural homomorphism g:R'—R’s/PR’p, then C=B'/
PR’p. Let B=¢p~1(B’) for the canonical homomorphism ¢: R'—R's defined by ¢(x)=x/1, then
B’=S-1B, whence C=S"!B/PR’s. Then ¢(V(B) Nf*~1(P))=V(C)=D. The set V(B) Nf*~1(P) is
a closed subset of f*~1(P). Hence ¢ is continuous mapping. Therefore ¢ is a homeomorphism.

(e) Since k(P)=Rp/S™1P, k(P)XrsR'»=Rp/S'PRXr,R'P=R’'s/S~!PR’s by Proposition 3. Since
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S-1PR’p=PR’p and R'»=Re®rR’, by Propositions 4, R’p/PR’»=k(P)®ssR'r=k(P)@rs(Ro T
R’) =k (P)®r:Rp)Q@rR'=k (p)&XrR’. This completes the proof of the theorem.

Corallary. Let f:R—R", g:R—R’’ be ring homomorphisms and let h:R—R'@rR’’ be defined
by h(x)=f{x)®g(x). Let X, Y,Z, T be the prime spectra of R, R’, R”, R"@gR’’ respectively.
Then h*(T) =f*(Y) Ng*(2).

Proof. Let P&EX, and let k=k(P) be the residue field at P. By the above theorem, the fiber
h*-1(p) is the spectrum of (R’QrR")Rrk= (R’ @rk) R« (R"” Xrk). Hence Ph*(T) (R'Qrk)Tu
(R” 2rk) %0&2R' Qrk0 and RV ek 0E2Pef* (Y) Ng* (Z). Therefore h*(T) =*(Y) Ng*(Z).

Proposition 10. Let(Ra, g.s) be a direct system of rings and R’ the direct limit. For each a,
let fs:R—R. be a ring homomorphism such that gesfa=1s whenever a=p. If :R—R’ is the ring
homomorphism induced by f., then f* (Spec(R’))=1{)af*s(Spec(Rq)).

Proof. Let P&Spec(R’). Then {*1(P) is the spectrum of R'Qrk{P) by Theorem 2, and R'Xr
k(P)=Zlim (R, rk(P)), since tensor products commaute with direct limits. By Remark 3 it
followsmt {*-1(P)=¢ if and only if Ra'{k(P)==0 for some a,%,e., if and only if *-1(P)=¢.
Hence f*1(P)Xx¢ if and only if fo*(P)—9 for ail @ and hence p&f*{Spec(R’)) if and only if
P& Nafa*(Spec(Ra)). Therefore f*{Spec(R’')=={ .[".(Spec(Ry)},

Proposition 11. Let fo:R—R. ve any famiiy of R-aigebras and let f:R—R’ be their tensor
product over R, Then f*(Spec(R’))={1af*.({nez Ra)).

Proof. Let 1 be the index set of a. For each finite subset | of 1, let R) dencte the tensor
product over R of the R, for ac]. Then (R:, wmk) is a direct sysiem of R-algebras, where
gi: R;—+Rk is the canonical R-algebra homoroiphism dfor JZK, Then the tensor product R of
the family {Ra)aet is R’=lim R, for which the hnmomorphisms f;:R+—R’ are R-algebra homom-
orphisms. Hence f*(SpecZRT).)=ﬂ;f*1(Spe(.(RJ)). But {*:(Spec(R;) = Naasfa*(Spec(Ra)) by the
above corollary of Theorem 2. Therefore {*(Epec(R)) =N af* (Spec(Ra)).

Proposition 12. Let fi:R—R; and {;:R—R; be ~ny R-algebra homomorphisms and let R'=
RixRy If we define :R—R’ by f(x)==(f.(x),f2(x)), then {*(Spec(R'))={*1(Spec(R1))N
f*;2(Spec(Ry)).

Proof. Let X; and Xz be the sets of all prime ideals of R’ containing (0} xRz and R;yx {0}
respectively, then Spec(R’)=X;UXs, whence P*(Spec(R)) =f*XiUXe)=1*(X;) Uf*(X2). Since
#(X,) =f2*(Spec(R1)) and {*(Xp) =f*3(Spec(Pz)), {*(Spec(R')) =t*1(Spec(R1)) Uf*(Spec(Ra)).

By Propestion 11 and 12, the subsets of X=Spec(R) of the form t*(Spec(R')), where fiR—R’
is a ring homomorphism, satisfy the axiome for closed sets in a topological space, The associated
topology is the constructible topology on X.

Proposition 13. The constructible topology is finer than the Zarski topology.

Proof. Let F be any closed subset of X in the Zarski topolcgy, then there exists an ideal A
of R such that F=V(A), Since V(A)=¢*(Spec(R/A}) for the natural homomorphism @: R-—
R/A, F is a closed subset of X in the constructible topology. Therefore the constractible
topology is finear than the Zarski topology.

Proposition 14. Let Xc denote the set X=Spec(R) of a ring R endowed with the constructible

topology. Then X¢ is quasi-compact.
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Proof. Let {Fa)aep be a family of closed subsets of X¢ such that NoFa=¢. There exist the
ring homomorphisms fs:R—R. such that Fo={*,(Spec(R.)). Let R’ be the temsor product of
the family of R-algebras f;:R—R. over R. Then

Spec (R,) = ﬂ af*u (Spec (Ra)) = n aFa=¢

Pioposition 15. For each g&R, X, is both open and closed in the constructible topology.

Proof. Since the Zarski topology Z is weaker than the constructible topology C and X,=Z,
X,=C. Hence X; is open in C. Let S= {g"|mnon-negative integers}, and let ¢:R—S7'R be the
canonical ring hemomorphism defined by ¢(a)=a/l. Then X;=¢*(Spec(S~'R)). Therefore X,

i closed in C.

Proposition 16. Xc is the Hausdorff space.

Proof. Let P, Q be any distinct elements of X¢, then theie exist an element such that g=Q
--P or g&P—Q. Suppose g=Q—P. Let 1—g=f, then P&X, and Q=X;, whence Q&X,-X,.
Since X, Xys—X, are open and XN (Xr—X,;)=¢, these two sets are disjoint neighbourhood of
2 and Q respectively. Therefcre Xc is Hausdorff.

Lemma. Let Ty and T are *wo topologies on a set X such that T;CTe (X, Ty) is Hausdorff
«ud (X,T2) is quasi-compact, then Ty= T, .

Preof.  Sinee (X,T2) 1s quasi-compact and T1CT2, (X,Ty) is also quasi-compact. Let F be
any ciosed set in Ty, and ‘et {Ga}aer be any open covering of F in (X,T1). Then the family
s .30 open covering in (X, Tp). Hence there exists a finite subcovering {Gay,Gaz...... ,Gan} Of
(Ga} o&i. Therefore F is quasi-compact in (X, Ty). Since(X,T:) is Hausdorff,F is closed in Ti.
Hence Ti=Ta. :

Theorem 3. Let X be the prime spectrum of a ring R, let Z and C be the Zarski topology
and the constructibie topogy of X respectively, and let N be the niladical of X. Then the
following are equivalent:

(1) R/N is regular

(2) Xz is Hauosdorff,

(3) Z=C

(4) For each f&R, Xy is open and closed in Xz

Proof. (1)=(2); It is clear by Proposition 8.

(2)=>(3); It is clear by Proposition 14 and Lemma.

(3)=>(4); It is clear by Proposition 15.

(4)=>(1): we can prove that the space Xz is Hausdorff in the same way as the proof of
proposition 15. Then we know that every prime ideal of R is maximal by proposition 7. Let f
be any element of R, and let P be any element of X7, Then f&P, and there exists a=R and
gEP such that g-+af=1, since P is maximal, Since g=1-—afeP, P&V (1—af). Since V(1—af)
is an open and closed subset of Xz, the family {V(1—af){acR} is an open covering of Xy
Since Xy is quasi-compact, there exists a finite subset{a;, a,...... ,an} of R such that X;Z
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Cit V(1—aif). Hence XN (N;%X1-aif) =9. Since NjaXi-air=Xmla-ap and % {1-aif)=
1—af for some a&R, X;NXisy=¢ for some ac=R, whence X;q-ap=¢. Hence f(1-af)eN,
that is, (})=(f?). Therefore R/N is regular.
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