SINGULAR INNER FUNCTIONS OF L^1 -TYPE

KEIJI IZUCHI* AND NORIO NIWA

ABSTRACT. Let \mathcal{M} be the maximal ideal space of the Banach algebra H^{∞} of bounded analytic functions on the open unit disc Δ . For a positive singular measure μ on $\partial \Delta$, let $L^1_+(\mu)$ be the set of measures ν with $0 \leq \nu \ll \mu$ and ψ_{ν} the associated singular inner functions. Let $\mathcal{R}(\mu)$ and $\mathcal{R}_0(\mu)$ be the union sets of $\{|\psi_{\nu}|<1\}$ and $\{\psi_{\nu}=0\}$ in $\mathcal{M}\setminus\Delta$, $\nu\in L^1_+(\mu)$, respectively. It is proved that if $S(\mu)=\partial\Delta$, where $S(\mu)$ is the closed support set of μ , then $\mathcal{R}(\mu)=\mathcal{R}_0(\mu)=\mathcal{M}\setminus(\Delta\cup M(L^{\infty}(\partial\Delta)))$ and $L^{\infty}(\partial\Delta)$ is generated by H^{∞} and $\overline{\psi_{\nu}}, \nu\in L^1_+(\mu)$. It is proved that $d\theta(S(\mu))=0$ if and only if there exists a Blaschke product b with zeros $\{z_n\}_n$ such that $\mathcal{R}(\mu)\subset\{|b|<1\}$ and $S(\mu)$ coincides with the set of cluster points of $\{z_n\}_n$. While, we prove that μ is a sum of finitely many point measures if and only if there exists another positive singular measure λ such that $\mathcal{R}(\mu)\subset\{|\psi_{\lambda}|<1\}$ and $S(\lambda)=S(\mu)$. Also it is studied conditions on μ for which $\mathcal{R}(\mu)=\mathcal{R}_0(\mu)$.

1. Introduction

Let H^{∞} be the Banach algebra of bounded analytic functions on the open unit disc Δ . We denote by $\mathcal{M}=M(H^{\infty})$ the maximal ideal space of H^{∞} , the space of nonzero multiplicative linear functionals of H^{∞} with the weak*-topology. Considering point evaluation, we may consider that $\Delta \subset \mathcal{M}$ and Δ is an open subset of \mathcal{M} . Carleson's corona theorem [2] says that Δ is dense in \mathcal{M} . Identifying a function in H^{∞} with its Gelfand transform, we may consider that H^{∞} is the closed subalgebra of $C(\mathcal{M})$, the space of continuous functions on \mathcal{M} . We also identify a function in H^{∞} with its boundary function. Then we may consider

Received March 19, 1999.

¹⁹⁹¹ Mathematics Subject Classification: Primary 46J15.

Key words and phrases: singular inner function, bounded analytic function, maximal ideal space.

^{*} This work has been partially supported by Grant-in-Aid for Scientific Research (No. 10440039), Ministry of Education, Science and Culture, Japan.

that H^{∞} is an (essentially) supremum norm closed subalgebra of L^{∞} , the usual Lebesgue space on the unit circle $\partial \Delta$. For a subset F of L^{∞} , we denote by $H^{\infty}[F]$ the closed subalgebra generated by H^{∞} and F. We may consider that the maximal ideal space $M(L^{\infty})$ of L^{∞} as a subset of \mathcal{M} and $M(L^{\infty})$ as the Shilov boundary of H^{∞} . A function f in H^{∞} is called inner if |f|=1 on $M(L^{\infty})$. For a function f in H^{∞} , we put

$$\{|f| < 1\} = \{x \in \mathcal{M} \setminus \Delta; |f(x)| < 1\} \text{ and } Z(f) = \{x \in \mathcal{M} \setminus \Delta; f(x) = 0\}.$$

We note that these sets are considered in $\mathcal{M} \setminus \Delta$. For a subset E of \mathcal{M} , we denote by \overline{E} the weak*-closure of E in \mathcal{M} . On the other hand, for a subset F of Δ , we denote by clF the closure of F in the complex plane. See [10] for the study of the structure of \mathcal{M} .

For a sequence $\{z_n\}_n$ in Δ satisfying $\sum_{n=1}^{\infty} (1-|z_n|) < \infty$, we can define a function

$$b(z) = \prod_{n=1}^{\infty} \frac{-\overline{z}_n}{|z_n|} \frac{z - z_n}{1 - \overline{z}_n z}, \quad z \in \Delta.$$

Then b is an inner function and called a Blaschke product with zeros $\{z_n\}_n$. Put $S(b)=cl\{z_n\}_n\setminus\{z_n\}_n\subset\partial\Delta$. Then S(b) is the set of points $e^{i\theta}\in\partial\Delta$ on which b can not be extended analytically. Since $\sum_{n=1}^{\infty}(1-|z_n|)<\infty$, there is a sequence of positive integers $p=(p_1,p_2,\cdots)$ such that

$$\sum_{n=1}^{\infty} p_n(1-|z_n|) < \infty \quad \text{and} \quad p_n \to \infty \quad \text{as } n \to \infty.$$

We denote by $\mathcal{P}(b)$ the set of sequences p as above. Then for $p=(p_1,p_2,\cdots)\in\mathcal{P}(b)$ we have an associated Blaschke product defined by

$$b^p(z) = \prod_{n=1}^{\infty} \left(\frac{-\overline{z}_n}{|z_n|} \frac{z-z_n}{1-\overline{z}_n z} \right)^{p_n}, \quad z \in \Delta.$$

In [12], the first author called Blaschke products $b^p, p \in \mathcal{P}(b)$, weak infinite powers of b and studied them. Let

$$\mathcal{R}(b) = \bigcup \left\{\{|b^p| < 1\}; p \in \mathcal{P}(b)
ight\} \quad ext{and} \quad \mathcal{R}_0(b) = \bigcup \left\{Z(b^p); p \in \mathcal{P}(b)
ight\}.$$

It is easy to see that $\mathcal{R}(b) = \mathcal{R}_0(b)$. The first author proved the following theorems.

THEOREM A. Let b be a Blaschke product. Then the following conditions are equivalent.

(i)
$$S(b) = \partial \Delta$$
.

- (ii) $\mathcal{R}(b) = \mathcal{M} \setminus (\Delta \cup M(L^{\infty})).$
- (iii) $L^{\infty}=H^{\infty}[\overline{b^{p}};p\in\mathcal{P}(b)].$

Let $d\theta$ be the arc length measure on $\partial \Delta$.

THEOREM B. Let b be a Blaschke product. Then the following conditions are equivalent.

- (i) $d\theta(S(b)) = 0$.
- (ii) There is a Blaschke product B such that S(B) = S(b) and $\mathcal{R}(b) \subset \{|B| < 1\}$.
- (iii) There is a Blaschke product B such that S(B) = S(b) and $\mathcal{R}(b) \subset Z(B)$.
- (iv) There is a Blaschke product B such that S(B) = S(b) and $H^{\infty}[\overline{b^p}; p \in \mathcal{P}(b)] \subset H^{\infty}[\overline{B}]$.

In this paper, we investigate singular inner function's versions of the above two theorems. We denote by $M(\partial \Delta)$ the Banach space of bounded regular Borel measures on $\partial \Delta$ with the total variation norm. Since $M(\partial \Delta)$ is the dual space of $C(\partial \Delta)$, the space of continuous functions on $\partial \Delta$, we may consider the weak*-topology on $M(\partial \Delta)$. Let M_s^+ be the set of positive (nonzero) singular measures in $M(\partial \Delta)$ with respect to the Lebesgue measure on $\partial \Delta$.

Let $P_z(e^{i\theta})$ be the Poisson kernel for $z \in \Delta$, that is,

$$P_z(e^{i heta}) = \mathrm{Re}\,rac{e^{i heta} + z}{e^{i heta} - z}.$$

For each $\mu \in M_s^+$, let

$$\psi_{\mu}(z) = \exp\left(-\int_{\partial \Delta} rac{e^{i heta} + z}{e^{i heta} - z} d\mu(e^{i heta})
ight), \quad z \in \Delta.$$

Then ψ_{μ} is inner and called a singular inner function. We note that

$$|\psi_{\mu}(z)| = \exp\left(-\int_{\partial \Delta} P_z(e^{i heta}) d\mu(e^{i heta})
ight), \quad z \in \Delta.$$

We denote by $S(\mu)$ the closed support set of μ . Then $S(\mu)$ is the set of points $e^{i\theta} \in \partial \Delta$ on which ψ_{μ} can not be extended analytically, see [4, 9]. Let

$$L^1_+(\mu) = \{ \nu \in M_s^+; 0 \le \nu \ll \mu \ , \nu \ne 0 \}.$$

Then we have a family of singular inner functions $\{\psi_{\nu}; \nu \in L^1_+(\mu)\}$. We call these functions associated singular inner functions of L^1 -type for the

measure μ . We may expect that these functions play the same role as weak infinite powers of a Blaschke product. We put

$$\mathcal{R}(\mu) = \bigcup \left\{ \{ |\psi_{\nu}| < 1 \}; \nu \in L^1_+(\mu) \right\} \text{ and } \mathcal{R}_0(\mu) = \bigcup \left\{ Z(\psi_{\nu}); \nu \in L^1_+(\mu) \right\}.$$

In section 2, we prove a singular inner function's version of Theorem A. In section 3, we study a singular inner function's version of Theorem B, and prove that $d\theta(S(\mu)) = 0$ if and only if there is a Blaschke product B such that $S(B) = S(\mu)$ and $\mathcal{R}(\mu) \subset Z(B)$. Also, we prove that for $\mu \in M_s^+$, if there exists $\lambda \in M_s^+$ such that $S(\lambda) = S(\mu)$ and $\mathcal{R}(\mu) \subset \{|\psi_{\lambda}| < 1\}$, then $S(\mu)$ is a finite set, and there are no $\lambda \in M_s^+$ such that $S(\lambda) = S(\mu)$ and $\mathcal{R}(\mu) \subset Z(\psi_{\lambda})$.

In the study of singular inner functions of L^1 -type, we will find some difference of properties between Blaschke products and singular inner functions. We have $\mathcal{R}(b) = \mathcal{R}_0(b)$ for every Blaschke product b, but $\mathcal{R}(\mu) \neq \mathcal{R}_0(\mu)$ for some $\mu \in M_s^+$. For $e^{i\theta} \in \partial \Delta$, we denote by $\delta_{e^{i\theta}}$ the unit point mass at $e^{i\theta} \in \partial \Delta$. Then we have $\mathcal{R}_0(\delta_{e^{i\theta}}) \subsetneq \mathcal{R}(\delta_{e^{i\theta}})$. In section 4, we study conditions on $\mu \in M_s^+$ for which $\mathcal{R}(\mu) = \mathcal{R}_0(\mu)$. In section 5, we study especially on discrete measures.

We denote by $M_{s,c}^+$ and $M_{s,d}^+$ the sets of continuous and discrete measures in M_s^+ , respectively.

2. Singular inner functions of L^1 -type

First, we prove the following theorem.

THEOREM 2.1. Let $\mu \in M_s^+$ such that $S(\mu) = \partial \Delta$. Then for every Blaschke product b, there exists $\nu \in L^1_+(\mu)$ such that $\{|b| < 1\} \subset Z(\psi_{\nu})$.

We note that in [5] Gorkin proved that for a Blaschke product b there exists a discrete measure $\mu \in M_s^+$ such that $\{|b| < 1\} \subset Z(\psi_\mu)$. To prove our theorem, we need some facts. For each $z \in \Delta$ with $|z| \neq 0$, we have $P_z(e^{i\theta}) \leq (1+|z|)/(1-|z|)$ for every $e^{i\theta} \in \partial \Delta$ and $P_z(z/|z|) = (1+|z|)/(1-|z|)$. Hence there exists an open subarc J of $\partial \Delta$ such that $z/|z| \in J$ and $P_z > 1/(1-|z|)$ on J.

LEMMA 2.1. Let $\{z_n\}_n$ be a sequence in Δ such that $\sum_{n=1}^{\infty}(1-|z_n|)<\infty$ and $|z_n|\neq 0$ for every n. Let $\{p_n\}_n$ be a sequence of positive numbers such that $\sum_{n=1}^{\infty}p_n(1-|z_n|)<\infty$ and $p_n\to\infty$ as $n\to\infty$. Let J_n be an open subarc of $\partial\Delta$ such that $z_n/|z_n|\in J_n$ and $P_{z_n}>1/(1-|z_n|)$ on

 J_n . Let $\mu \in M_s^+$ such that $\mu = \sum_{n=1}^{\infty} \mu_n, \mu_n \in M_s^+, S(\mu_n) \subset clJ_n$, and $\|\mu_n\| \ge p_n(1-|z_n|)$ for every n. Then $\psi_{\mu}(z_n) \to 0$ as $n \to \infty$.

Proof. By our assumption, we have

$$\begin{split} \int_{\partial\Delta} P_{z_n}(e^{i\theta}) d\mu(e^{i\theta}) &\geq \int_{J_n} P_{z_n}(e^{i\theta}) d\mu_n(e^{i\theta}) \\ &\geq \|\mu_n\|/(1-|z_n|) \\ &\geq p_n. \end{split}$$

Since $p_n \to \infty$ as $n \to \infty$,

$$|\psi_{\mu}(z_n)| = \exp\left(-\int_{\partial\Delta} P_{z_n}(e^{i heta}) d\mu(e^{i heta})
ight) o 0 \quad ext{as } n o\infty.$$

A Blaschke product b and its zeros $\{z_n\}_n$ are called interpolating if for every bounded sequence of complex numbers $\{a_n\}_n$, there exists a function $f \in H^{\infty}$ such that $f(z_n) = a_n$ for every n. It is known that if b is an interpolating Blaschke product, $Z(b) = \overline{\{z_n\}_n} \setminus \{z_n\}_n$, see [9, p. 205]. In the study of H^{∞} , interpolating Blaschke products play an important role, see [4, 11].

By [1, 7], we have the following, see also [5].

LEMMA 2.2. Let b be an interpolating Blaschke product and $\mu \in M_s^+$. If $Z(b) \subset Z(\psi_\mu)$, then $\{|b| < 1\} \subset Z(\psi_\mu)$.

Proof of Theorem 2.1. It is known that there is an interpolating Blaschke product q such that $\{|q|<1\}=\{|b|<1\}$, see [15] or [5]. Hence we may assume that b is interpolating with zeros $\{z_n\}_n$ and $|z_n|\neq 0$ for every n. Since $\sum_{n=1}^{\infty}(1-|z_n|)<\infty$, there is a sequence of positive numbers $\{p_n\}_n$ such that $\sum_{n=1}^{\infty}p_n(1-|z_n|)<\infty$ and $p_n\to\infty$ as $n\to\infty$. For each n, take an open subarc J_n of $\partial\Delta$ such that $z_n/|z_n|\in J_n$ and $P_{z_n}>1/(1-|z_n|)$ on J_n . Since $S(\mu)=\partial\Delta$, $\|\mu_{|J_n}\|\neq 0$, where $\mu_{|J_n}$ is the restriction measure of μ on J_n . Put

$$\mu_n = rac{p_n(1-|z_n|)\mu_{|J_n}}{\|\mu_{|J_n}\|} \quad ext{and} \quad
u = \sum_{n=1}^\infty \mu_n.$$

Then

$$\|\nu\| \le \sum_{n=1}^{\infty} \|\mu_n\| = \sum_{n=1}^{\infty} p_n(1-|z_n|) < \infty.$$

Since $\mu_n \in L^1_+(\mu)$, we have $\nu \in L^1_+(\mu)$. Also it is clear that $S(\mu_n) \subset cl J_n$. Then by Lemma 2.1, $\psi_{\nu}(z_n) \to 0$ as $n \to \infty$, so that $Z(b) \subset Z(\psi_{\nu})$. Hence by Lemma 2.2, we obtain our assertion.

As applications of Theorem 2.1, we have the following corollaries, see [12]. Here we note that by [8] if b is a Blaschke product and $\mu \in M_s^+$ such that $\{|b| < 1\} \subset Z(\psi_\mu)$, then $\psi_\mu \bar{b} \in H^\infty + C(\partial \Delta)$.

COROLLARY 2.1. Let $\mu \in M_s^+$ such that $S(\mu) = \partial \Delta$. Then for $f \in L^{\infty}$, there exists $\nu \in L_+^1(\mu)$ such that $\psi_{\nu} f \in H^{\infty} + C(\partial \Delta)$.

COROLLARY 2.2. Let $\mu \in M_s^+$ such that $S(\mu) = \partial \Delta$. Then for $f \in L^{\infty}$ and $\varepsilon > 0$, there exists $\nu \in L_+^1(\mu)$ and $h \in H^{\infty}$ such that $\|\psi_{\nu}f - h\| < \varepsilon$.

Proof. Use Corollary 2.1 and a fact that if $g \in C(\partial \Delta)$ and $\mu \in M_s^+$, then $\|g\psi_{\mu}^n + H^{\infty}\| \to 0$ as $n \to \infty$.

The following is the singular inner function's version of Theorem A.

Theorem 2.2. Let $\mu \in M_s^+$. Then the following assertions are equivalent.

- (i) $S(\mu) = \partial \Delta$.
- (ii) $\mathcal{R}_0(\mu) = \mathcal{M} \setminus (\Delta \cup M(L^{\infty})).$
- (iii) $\mathcal{R}(\mu) = \mathcal{M} \setminus (\Delta \cup M(L^{\infty})).$
- (iv) $L^{\infty} = H^{\infty}[\overline{\psi_{\nu}}; \nu \in L^1_+(\mu)].$

Proof. (i) \Rightarrow (ii) Suppose that $S(\mu) = \partial \Delta$. For each Blaschke product b, by Theorem 2.1 there exists $\nu \in L^1_+(\mu)$ such that $\{|b| < 1\} \subset Z(\psi_{\nu})$. By Newman's Theorem [14],

$$igg|_{\{|b|<1\};b}$$
 is a Blaschke product $igg|=\mathcal{M}\setminus(\Delta\cup M(L^\infty)),$

hence (ii) holds.

- (ii) \Rightarrow (iii) follows from $\mathcal{R}_0(\mu) \subset \mathcal{R}(\mu) \subset \mathcal{M} \setminus (\Delta \cup M(L^{\infty}))$.
- (iii) \Rightarrow (i) Suppose that $S(\mu) \neq \partial \Delta$. Then ψ_{μ} can be extended analytically at each point in $\partial \Delta \setminus S(\mu)$ and $|\psi_{\mu}| = 1$ on $\partial \Delta \setminus S(\mu)$. Hence it is not difficult to see that $\mathcal{R}(\mu) \neq \mathcal{M} \setminus (\Delta \cup M(L^{\infty}))$.
- (iii) \Leftrightarrow (iv) This follows from the Chang and Marshall Theorem [3, 13].

Next, we study $\mathcal{R}(\mu)$ when $S(\mu) \neq \partial \Delta$. For -1 < R < 1 and $e^{i\theta} \in \partial \Delta$, let

$$\Delta_R(e^{i\theta}) = \{ z \in \Delta; |z - (1+R)e^{i\theta}/2| < (1-R)/2 \}.$$

LEMMA 2.3. Let -1 < R < 1 and $e^{i\theta} \in \partial \Delta$. Then

$$\Delta_R(e^{i heta}) = \left\{z \in \Delta; |\psi_{\delta_{e^{i heta}}}(z)| < e^{-rac{1-R}{1-R}}
ight\}.$$

Proof. This follows from that

$$|\psi_{\delta_{e^{i heta}}}(z)| < e^{-rac{1-R}{1-R}} \quad ext{if and only if} \quad rac{1-|z|^2}{|e^{i heta}-z|^2} > rac{1+R}{1-R}.$$

The following theorem is the singular inner function's version of [12, Theorem 4.1].

Theorem 2.3. Let $\mu \in M_s^+$ and $e^{i\theta_0} \in S(\mu)$. Then there exists $\nu \in L^1_+(\mu)$ such that $\psi_{\nu}(re^{i\theta_0}) \to 0$ as $r \to 1, 0 < r < 1$.

Proof. We may assume that $e^{i\theta_0}=1$. Let $\{R_n\}_n$ be a sequence of increasing positive numbers such that $\sum_{n=1}^{\infty}(1-R_n)<\infty$ and $0< R_n<1$. Then there exists another sequence of positive numbers $\{p_n\}_n$ such that

(2.1)
$$\sum_{n=1}^{\infty} p_n (1 - R_n) < \infty \quad \text{and} \quad p_n \to \infty \quad \text{as } n \to \infty.$$

We have $(R_n, R_{n+1}] \subset \Delta_{R_n}(1)$. Hence by Lemma 2.3,

(2.2)
$$|\psi_{\delta_1}| < e^{-\frac{1+R_n}{1-R_n}} \quad \text{on } (R_n, R_{n+1}].$$

For each positive integer j, let $J_j = \{e^{i\theta} \in \partial \Delta; |\theta| \leq 1/j\}$. Since $1 = e^{i\theta_0} \in S(\mu), \|\mu_{|J_i}\| \neq 0$. Put

(2.3)
$$\mu_j = \mu_{|J_i|} / \|\mu_{|J_i|}\|.$$

Then μ_j converges to δ_1 as $j \to \infty$ in the weak*-topology of $M(\partial \Delta)$, so that $\psi_{\mu_j}(z) \to \psi_{\delta_1}(z)$ uniformly on compact subsets of Δ . Hence for each positive integer n, by (2.2) there exists a positive integer j_n such that

(2.4)
$$|\psi_{\mu_{i_n}}| < e^{-\frac{1-R_n}{1-R_n}+1} \quad \text{on } (R_n, R_{n+1}].$$

Let

$$\nu = \sum_{k=1}^{\infty} p_k (1 - R_k) \mu_{j_k}.$$

Then by (2.1) and (2.3), $\nu \in L^1_+(\mu)$, and for every $r \in (R_n, R_{n+1}]$ we have

$$egin{aligned} |\psi_{
u}(r)| &= \prod_{k=1}^{\infty} |\psi_{\mu_{j_k}}(r)|^{p_k(1-R_k)} \ &\leq |\psi_{\mu_{j_n}}(r)|^{p_n(1-R_n)} \ &< e^{\left(-\frac{1+R_n}{1-R_n}+1
ight)p_n(1-R_n)} \qquad ext{by (2.4)}. \end{aligned}$$

Hence

$$\sup_{R_n < r \le R_{n+1}} |\psi_{\nu}(r)| \le e^{-p_n(1+R_n) + p_n(1-R_n)}.$$

By (2.1),
$$p_n(1+R_n) \to \infty$$
 and $p_n(1-R_n) \to 0$ as $n \to \infty$. Hence
$$\sup_{R_n < r \le R_{n+1}} |\psi_{\nu}(r)| \to 0 \quad \text{as } n \to \infty.$$

Thus we get our assertion.

COROLLARY 2.3. Let $\mu_1, \mu_2 \in M_s^+$. Then the following conditions are equivalent.

- (i) $S(\mu_1) \cap S(\mu_2) = \emptyset$.
- (ii) $\mathcal{R}(\mu_1) \cap \mathcal{R}(\mu_2) = \emptyset$.
- (iii) $\mathcal{R}_0(\mu_1) \cap \mathcal{R}_0(\mu_2) = \emptyset$.

Proof. (i) \Rightarrow (ii) \Rightarrow (iii) are clear. To prove (iii) \Rightarrow (i), suppose that $S(\mu_1) \cap S(\mu_2) \neq \emptyset$. Take $e^{i\theta_0} \in S(\mu_1) \cap S(\mu_2)$. Then, by Theorem 2.3, there exist $\nu \in L^1_+(\mu_1)$ and $\sigma \in L^1_+(\mu_2)$ such that $\psi_{\nu}(re^{i\theta_0}) \to 0$ and $\psi_{\sigma}(re^{i\theta_0}) \to 0$ as $r \to 1, 0 < r < 1$. Thus both sets $\mathcal{R}_0(\mu_1)$ and $\mathcal{R}_0(\mu_2)$ contain $\{re^{i\theta_0}; 0 < r < 1\} \setminus \{re^{i\theta_0}; 0 < r < 1\}$. Hence we have $\mathcal{R}_0(\mu_1) \cap \mathcal{R}_0(\mu_2) \neq \emptyset$.

COROLLARY 2.4. Let $\mu \in M_s^+$. If $d\theta(S(\mu)) > 0$, then there are no nonzero $f \in H^{\infty}$ such that $\mathcal{R}_0(\mu) \subset Z(f)$.

Proof. Suppose that $d\theta(S(\mu)) > 0$ and $\mathcal{R}_0(\mu) \subset Z(f)$ for some $f \in H^{\infty}$. By Theorem 2.3, $f(re^{i\theta}) \to 0$ as $r \to 1, 0 < r < 1$, for every $e^{i\theta} \in S(\mu)$. Since $d\theta(S(\mu)) > 0$, we have f = 0.

3. Associated domains

In [12], the first author defined an associated domain of a Blaschke product b with zeros $\{z_n\}_n$ as follows; $\Omega(b) = \bigcup \{z \in \Delta; \rho(z_n, z) < |z_n|\}$,

where $\rho(z_n, z) = |z - z_n|/|1 - \overline{z}_n z|$. In this section, we define an associated domain $\Omega(\mu)$ of $\mu \in M_s^+$, and using this properties we study $\mathcal{R}(\mu)$.

Let $\mu \in M_s^+$. Suppose that $S(\mu) \neq \partial \Delta$. Then there is a sequence (may be finite) of disjoint open subarcs $\{J_k\}_k$ of $\partial \Delta$ such that

(3.1)
$$\partial \Delta \setminus S(\mu) = \bigcup_{k=1}^{\infty} J_k.$$

Put $J_k = \{e^{i\theta}; s_k < \theta < t_k\}$. For each positive integer k, take two sequences $\{s_{k,n}\}_n$ and $\{t_{k,n}\}_n$ such that $s_k < s_{k,n} < s_{k,1} < t_{k,1} < t_{k,n} < t_k$, $s_{k,n} \to s_k$ and $t_{k,n} \to t_k$ as $n \to \infty$. Let $\{R_n\}_n$ be a sequence of decreasing numbers such that

(3.2)
$$-1 < R_n < 0 \text{ and } \lim_{n \to \infty} R_n = -1.$$

Put

(3.3)
$$\Omega_n = \bigcup \{ \Delta_{R_n}(e^{i\theta}); e^{i\theta} \in S(\mu) \}.$$

Then Ω_n is a simply connected domain, $\Omega_n \subset \Omega_{n+1}$, and $\partial \Omega_n \cap \partial \Delta = S(\mu)$. By (3.2) and (3.3), $\bigcup_{n=1}^{\infty} \Omega_n = \Delta$. For each pair of integers k and n such that $1 \leq k \leq n$, let

$$(3.4) E_{k,n} = \{ z \in \Delta; s_{k,n} \le \arg z \le t_{k,n}, z \notin \Omega_n \}.$$

Then $E_{k,n}$ is a closed subset of Δ , and for each fixed k, the sequence $\{E_{k,n}\}_n$ converges to J_k as $n \to \infty$. Let

(3.5)
$$E = \bigcup_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_{k,n}.$$

Then E is a closed subset of Δ . Let

(3.6)
$$\Omega(\mu) = \Delta \setminus E.$$

When $S(\mu) = \partial \Delta$, we put $\Omega(\mu) = \Delta$. By our construction, $\Omega(\mu)$ is a simply connected domain and

(3.7)
$$\partial \Omega(\mu) \cap \partial \Delta = S(\mu).$$

We call $\Omega(\mu)$ the associated domain of μ . Since there are infinitely many choices of sequences $\{E_{k,n}\}_{k,n}$, $\Omega(\mu)$ is not determined uniquely. In any way, for each μ we assign $\Omega(\mu)$ one of such domains.

The following theorem is the singular inner function's version of [12, Theorem 4.4].

THEOREM 3.1. Let $\mu \in M_s^+$. Then $\mathcal{R}(\mu) \subset \overline{\Omega(\mu)}$.

To prove Theorem 3.1, we need the following lemma.

LEMMA 3.1. Let $\mu \in M_s^+$ and $z_0 \in \Delta, z_0 \neq 0$. Let $e^{it_0} \in S(\mu)$ be the nearest point from z_0 . Then $|\psi_{\mu}(z_0)| \geq |\psi_{\delta_{,it_0}}(z_0)|^{\|\mu\|}$.

Proof. By simple calculation, we have

$$egin{aligned} |\psi_{\mu}(z_0)| &= \exp\left(-\int_{\partial\Delta}P_{z_0}(e^{i heta})d\mu(e^{i heta})
ight) \ &\geq \exp\left(-\|\mu\|\int_{\partial\Delta}P_{z_0}(e^{i heta})d\delta_{e^{it_0}}
ight) \ &= |\psi_{\delta_z i t_0}(z_0)|^{\|\mu\|}. \end{aligned}$$

Proof of Theorem 3.1. When $S(\mu) = \partial \Delta$, $\overline{\Omega(\mu)} = \overline{\Delta} = \mathcal{M}$, so that we may assume that $S(\mu) \neq \partial \Delta$. To describe $\Omega(\mu)$, we use (3.1) - (3.7).

To prove our assertion, suppose not. Then there exist $\nu \in L^1_+(\mu)$ and a sequence $\{z_j\}_j$ in $\Delta \setminus \Omega(\mu)$ such that $|z_j| \to 1$ and

(3.8)
$$\limsup_{j \to \infty} |\psi_{\nu}(z_j)| < 1.$$

For each j, by (3.5) and (3.6), $z_j \in E_{k_j,n_j}$ for some $k_j \leq n_j$. Then by (3.4), $z_j \notin \Omega_{n_j}$. Hence by (3.3), $z_j \notin \Delta_{R_{n_j}}(e^{i\theta})$ for every $e^{i\theta} \in S(\mu)$. By Lemma 2.3,

$$|\psi_{\delta_{e^{i heta}}}(z_j)| \geq e^{-rac{1-R_{n_j}}{1-R_{n_j}}} \quad ext{for every } e^{i heta} \in S(\mu).$$

Since $S(\nu) \subset S(\mu)$, by Lemma 3.1 we have

(3.9)
$$|\psi_{\nu}(z_j)| \ge e^{-\frac{1+R_{n_j}}{1-R_{n_j}}||\nu||}$$
 for every j .

By considering a subsequence of $\{z_j\}_j$, we may assume that $n_j \to \infty$ as $j \to \infty$ or $n_j = n_0$ for every j. When $n_j \to \infty$ as $j \to \infty$, by (3.2) and (3.9) we have $|\psi_{\nu}(z_j)| \to 1$. This contradicts (3.8). When $n_j = n_0$ for every j, we have $1 \le k_j \le n_0$ for every j. Hence we may assume that $k_j = k_0$ for every j. Then $z_j \in E_{k_0,n_0}$ for every j. Since $|z_j| \to 1$, by (3.4) we have $cl\{z_j\}_j \setminus \{z_j\}_j \subset J_{k_0}$. Since $S(\nu) \subset S(\mu)$, $S(\nu) \cap J_{k_0} = \emptyset$. Hence $|\psi_{\nu}(z_j)| \to 1$ as $j \to \infty$. This also contradicts (3.8).

By (3.7), $\Omega(\mu)$ is a simply connected domain and $\partial\Omega(\mu)\cap\partial\Delta=S(\mu)$. In [12], the first author proved that for a Blaschke product b, $d\theta(S(b))=0$ if and only if there exists a Blaschke product B such that S(B)=S(b) and $\overline{\Omega(b)}\setminus\Delta\subset\{|B|<1\}$. In the same way as the proof of [12, Theorem 4.6] and using Theorem 3.1, we can prove the following theorem which is the singular inner function's version of Theorem B.

Theorem 3.2. Let $\mu \in M_s^+$. Then the following conditions are equivalent.

- (i) $d\theta(S(\mu)) = 0$.
- (ii) There exists a Blaschke product b such that $S(b) = S(\mu)$ and $\mathcal{R}(\mu) \subset Z(b)$.
- (iii) There exists a Blaschke product b such that $S(b) = S(\mu)$ and $\mathcal{R}(\mu) \subset \{|b| < 1\}$.
- (iv) There exists a Blaschke product b such that $S(b) = S(\mu)$ and $H^{\infty}[\overline{\psi}_{\nu}; \nu \in L^{1}_{+}(\mu)] \subset H^{\infty}[\overline{b}].$

Here, we have a question for which $\mu \in M_s^+$ there exists $\lambda \in M_s^+$ such that $S(\lambda) = S(\mu)$ and $\mathcal{R}(\mu) \subset \{|\psi_{\lambda}| < 1\}$. We note that $\mathcal{R}(\delta_{e^{i\theta}}) = \{|\psi_{\delta_{e^{i\theta}}}| < 1\}$. Hence if $S(\mu)$ is a finite set, then $\mathcal{R}_0(\mu) = Z(\psi_{\mu}) \subsetneq \{|\psi_{\mu}| < 1\} = \mathcal{R}(\mu)$. Now we have the following theorem.

Theorem 3.3. Let $\mu \in M_s^+$. Then the following conditions are equivalent.

- (i) $S(\mu)$ is a finite set.
- (ii) $\mathcal{R}(\mu) = \{ |\psi_{\mu}| < 1 \}.$
- (iii) There exists $\lambda \in M_s^+$ such that $S(\lambda) = S(\mu)$ and $\mathcal{R}(\mu) \subset \{|\psi_{\lambda}| < 1\}$.
- (iv) There exists $\lambda \in M_s^+$ such that $S(\lambda) = S(\mu)$ and $\mathcal{R}_0(\mu) \subset \{|\psi_{\lambda}| < 1\}$.
- (v) There exists $\lambda \in M_s^+$ such that $S(\lambda) = S(\mu)$ and $\mathcal{R}_0(\mu) \subset Z(\psi_{\lambda})$.

Proof. (i) \Rightarrow (ii) and (i) \Rightarrow (v) are already mentioned.

- (ii) \Rightarrow (iii) and (v) \Rightarrow (iv) are trivial.
- (iv) \Rightarrow (iii) Suppose that there exists $\lambda \in M_s^+$ such that $S(\lambda) = S(\mu)$ and $\mathcal{R}_0(\mu) \subset \{|\psi_{\lambda}| < 1\}$. To prove (iii), let $x \in \mathcal{R}(\mu)$. Then there exists $\nu \in L^1_+(\mu)$ such that $|\psi_{\nu}(x)| < 1$, so that by [1, p. 92] there exists $y \in \mathcal{M}$ such that supp $\mu_y \subset \text{supp } \mu_x$ and $\psi_{\nu}(y) = 0$, where μ_x is the representing

measure on $M(L^{\infty})$ for x, that is,

$$f(x) = \int_{M(L^{\infty})} f \, d\mu_x \quad \text{for } f \in H^{\infty}$$

and supp μ_x is the closed support set of μ_x . Then $y \in \mathcal{R}_0(\mu)$, so that by our assumption we have $|\psi_{\lambda}(y)| < 1$. Since supp $\mu_y \subset \text{supp } \mu_x$, we have $|\psi_{\lambda}(x)| < 1$. Thus we get (iii).

(iii)
$$\Rightarrow$$
 (i) Let $\lambda \in M_s^+$ such that

(3.10)
$$S(\lambda) = S(\mu) \quad \text{and} \quad \mathcal{R}(\mu) \subset \{|\psi_{\lambda}| < 1\}.$$

By Frostman's theorem (see [4]), there exists a Blaschke product B such that $S(B) = S(\lambda)$ and $\{|B| < 1\} = \{|\psi_{\lambda}| < 1\}$. Then by (3.10), $\mathcal{R}(\mu) \subset \{|B| < 1\}$, so that by Theorem 3.2 we have $d\theta(S(\mu)) = 0$. If $\partial \Delta \setminus S(\mu)$ consists of finitely many disjoint open subarcs of $\partial \Delta$, $S(\mu)$ is a finite set.

So we shall show that $\partial \Delta \setminus S(\mu)$ consists of finitely many disjoint open subarcs. To prove this, suppose not. Then $\partial \Delta \setminus S(\mu) = \bigcup_{n=1}^{\infty} J_n$, where J_n is an open subarc of $\partial \Delta$, say $J_n = \{e^{i\theta}; s_n < \theta < t_n\}$, such that

(3.11)
$$J_n \cap S(\mu) = \emptyset \quad \text{and} \quad e^{is_n}, e^{it_n} \in S(\mu).$$

For the sake of simplicity, we assume that

$$0 < s_{n+1} < t_{n+1} < s_n < t_n$$
 and $\lim_{n \to \infty} t_n = 0$.

Put

(3.12)
$$\lambda_n = \lambda_{|\{e^{i\theta}; t_{n+1} \le \theta \le s_n\}}.$$

Then by (3.10) and (3.11), we have $\|\lambda_n\| \neq 0$. We also have $\sum_{n=1}^{\infty} \|\lambda_n\| \leq \|\lambda\| < \infty$. Hence there exists a sequence of positive numbers $\{p_n\}_n$ such that

(3.13)
$$\sum_{n=1}^{\infty} p_n \|\lambda_n\| < \infty \quad \text{and} \quad p_n \to \infty \quad \text{as } n \to \infty.$$

Here we can take $-1 < R_n < 1$ such that

(3.14)
$$\frac{1 + R_n}{1 - R_n} \|\lambda_n\| = \frac{1}{p_n}.$$

Put $\lambda'_n = \lambda - \lambda_n$. Then by (3.12) we have $e^{is_n} \notin S(\lambda'_n)$, so that for each fixed n, we have $|\psi_{\lambda'_n}(z)| \to 1$ as $z \to e^{is_n}, z \in \Delta$. Hence there exists a

sequence $\{z_n\}_n$ such that

$$(3.15) z_n \in \partial \Delta_{R_n}(e^{is_n}), \quad s_n < \arg z_n < (s_n + t_n)/2,$$

and

$$(3.16) |\psi_{\lambda_n}(z_n)| \to 1.$$

By (3.15) and Lemma 2.3, we have

(3.17)
$$|\psi_{\delta_{ris_n}}(z_n)| = e^{-\frac{1+R_n}{1-R_n}}.$$

Hence

$$\begin{aligned} |\psi_{\lambda}(z_n)| &= |\psi_{\lambda_n}(z_n)| |\psi_{\lambda'_n}(z_n)| \\ &\geq |\psi_{\delta_{e^{is_n}}}(z_n)|^{\|\lambda_n\|} |\psi_{\lambda'_n}(z_n)| \quad \text{by (3.15) and Lemma 3.1} \\ &= e^{-\frac{1+R_n}{1-R_n}\|\lambda_n\|} |\psi_{\lambda'_n}(z_n)| \quad \text{by (3.17)} \\ &= e^{-\frac{1}{p_n}} |\psi_{\lambda'_n}(z_n)| \quad \text{by (3.14)}. \end{aligned}$$

Thus by (3.13) and (3.16),

(3.18)
$$|\psi_{\lambda}(z_n)| \to 1 \text{ as } n \to \infty.$$

For each $c < s_n$, let $\mu_{n,c} = \mu_{|\{e^{i\theta}; c \le \theta \le s_n\}}$. By (3.11), $\|\mu_{n,c}\| \ne 0$. Then $\mu_{n,c}/\|\mu_{n,c}\| \to \delta_{e^{is_n}}$ as $c \to s_n$ in the weak*-topology of $M(\partial \Delta)$, so that there exists $c_n < s_n$ such that

$$|\psi_{\mu_n}(z_n)| \le |\psi_{\delta_{mn}}(z_n)|^{1/2},$$

where $\mu_n = \mu_{n,c_n}/\|\mu_{n,c_n}\|$. Let

(3.20)
$$\nu = \sum_{n=1}^{\infty} p_n ||\lambda_n|| \mu_n.$$

Then by (3.13), $\|\nu\| \leq \sum_{n=1}^{\infty} p_n \|\lambda_n\| < \infty$. Hence $\nu \in L^1_+(\mu)$ and $|\psi_{\nu}(z_n)| \leq |\psi_{\mu_n}(z_n)|^{p_n \|\lambda_n\|}$ by (3.20) $\leq |\psi_{\delta_{e^{is_n}}}(z_n)|^{p_n \|\lambda_n\|/2}$ by (3.19)

$$= e^{-\frac{1+R_n}{1-R_n}\frac{p_n\|\lambda_n\|}{2}} \quad \text{by (3.17)}$$

$$=e^{-1/2}$$
 by (3.14).

Therefore $\overline{\{z_n\}_n}\setminus\{z_n\}_n\subset\{|\psi_\nu|<1\}\subset\mathcal{R}(\mu)$. On the other hand, by (3.18) we have $\overline{\{z_n\}_n}\setminus\{z_n\}_n\subset\{|\psi_\lambda|=1\}$. Thus $\mathcal{R}(\mu)\not\subset\{|\psi_\lambda|<1\}$. This contradicts (3.10).

COROLLARY 3.1. Let $\mu \in M_s^+$. Then there are no measures $\lambda \in M_s^+$ such that $S(\lambda) = S(\mu)$ and $\mathcal{R}(\mu) \subset Z(\psi_{\lambda})$.

Proof. Suppose that $\mathcal{R}(\mu) \subset Z(\psi_{\lambda})$ for some $\lambda \in M_s^+$ with $S(\lambda) = S(\mu)$. By Theorem 3.3, $S(\lambda)$ is a finite set, so that $\mathcal{R}(\mu) = \{|\psi_{\mu}| < 1\} = \{|\psi_{\lambda}| < 1\} \supseteq Z(\psi_{\lambda})$. This is a contradiction.

4. Zero sets of singular inner functions of L^1 -type

In Theorem 2.2, we proved that $\mathcal{R}(\mu) = \mathcal{R}_0(\mu)$ for $\mu \in M_s^+$ with $S(\mu) = \partial \Delta$. In this section, we study measures $\mu \in M_s^+$ satisfying $\mathcal{R}(\mu) = \mathcal{R}_0(\mu)$. For $\zeta \in \partial \Delta$, let $\mathcal{M}_{\zeta} = \{x \in \mathcal{M}; z(x) = \zeta\}$, where z is the coordinate function on Δ . First, we prove

PROPOSITION 4.1. Suppose that $\mu \perp \delta_{\zeta}$, where $\mu \in M_s^+$ and $\zeta \in \partial \Delta$. Then there exists $\nu \in L^1_+(\mu)$ such that $\mathcal{M}_{\zeta} \cap \{|\psi_{\mu}| < 1\} \subset Z(\psi_{\nu})$.

Proof. When $\zeta \notin S(\mu)$, then $\mathcal{M}_{\zeta} \cap \{|\psi_{\mu}| < 1\} = \emptyset$, so our assertion is clear. Hence we assume that $\zeta \in S(\mu)$. Take a sequence of decreasing open subarcs $\{J_n\}_n$ of $\partial \Delta$ such that $\bigcap_{n=1}^{\infty} J_n = \{\zeta\}$. Put $\mu_n = \mu_{|J_n}$. Then $\|\mu_n\| \neq 0$. Since $\mu \perp \delta_{\zeta}$, $\|\mu_n\| \to 0$ as $n \to \infty$. Moreover we may assume that $\sum_{n=1}^{\infty} \|\mu_n\| < \infty$. Then there exists a sequence of positive numbers $\{p_n\}_n$ such that $\sum_{n=1}^{\infty} p_n \|\mu_n\| < \infty$ and $p_n \to \infty$ as $n \to \infty$. We put $\nu = \sum_{n=1}^{\infty} p_n \mu_n$. Since $\mu_n \in L_+^1(\mu)$ and $\|\nu\| \leq \sum_{n=1}^{\infty} p_n \|\mu_n\| < \infty$, we have $\nu \in L_+^1(\mu)$. We note that $|\psi_{\mu_n}| = |\psi_{\mu}|$ on \mathcal{M}_{ζ} . Then we have $|\psi_{\nu}| \leq |\psi_{\mu_n}|^{p_n} = |\psi_{\mu}|^{p_n}$ on \mathcal{M}_{ζ} . Since $p_n \to \infty$ as $n \to \infty$, we obtain our assertion.

Proposition 4.2. Let $\mu \in M_{s,c}^+$. Then $\mathcal{R}(\mu) = \mathcal{R}_0(\mu)$.

Proof. It is trivial that

(4.1)
$$\mathcal{R}_0(\mu) \subset \mathcal{R}(\mu) \subset \bigcup \{ \mathcal{M}_{\zeta}; \zeta \in S(\mu) \}.$$

To prove our assertion, let $\nu \in L^1_+(\mu)$ and $\zeta \in S(\mu)$. By Proposition 4.1, there exists $\sigma \in L^1_+(\nu)$ such that

$$\mathcal{M}_{\zeta} \cap \{ |\psi_{\nu}| < 1 \} \subset Z(\psi_{\sigma}).$$

Since $\sigma \in L^1_+(\nu) \subset L^1_+(\mu)$, by (4.2) we have $\mathcal{M}_{\zeta} \cap \{|\psi_{\nu}| < 1\} \subset \mathcal{R}_0(\mu)$. Thus we get $\mathcal{M}_{\zeta} \cap \mathcal{R}(\mu) \subset \mathcal{R}_0(\mu)$ for $\zeta \in S(\mu)$. Hence by (4.1), $\mathcal{R}(\mu) \subset \mathcal{R}_0(\mu)$.

Next, we study $\mu \in M_s^+$ satisfying $\mathcal{R}(\mu) = \mathcal{R}_0(\mu)$.

THEOREM 4.1. Let $\mu \in M_s^+$ and $\mu = \mu_c + \mu_d$, where $\mu_c \in M_{s,c}^+$ and $\mu_d \in M_{s,d}^+$. Let $\mu_d = \sum_{n=1}^{\infty} a_n \delta_{e^{i\theta_n}}$, where $a_n > 0$ for every n. Then the following assertions are equivalent.

- (i) $\mathcal{R}(\mu) = \mathcal{R}_0(\mu)$.
- (ii) For every n, there exists $\nu_n \in L^1_+(\mu)$ such that $\{|\psi_{\delta_{e^{i\theta_n}}}| < 1\} \subset Z(\psi_{\nu_n})$.
- (iii) For every n, there exists $\lambda_n \in M_s^+$ such that $S(\lambda_n) \subset S(\mu)$ and $\{|\psi_{\delta_{\kappa};\theta_n}| < 1\} \subset Z(\psi_{\lambda_n})$.

To prove our theorem, we need some lemmas.

LEMMA 4.1. Let $\mu=\sum_{n=1}^{\infty}a_n\delta_{e^{i\theta_n}}\in M_{s,d}^+,$ where $a_n>0$ for every n. Then

$$\mathcal{R}(\mu) = \mathcal{R}_0(\mu) \cup \bigcup_{n=1}^{\infty} \{ |\psi_{\delta_{e^{i heta_n}}}| < 1 \}.$$

Proof. We know

$$\mathcal{R}_0(\mu) \cup igcup_{n=1}^\infty \{ |\psi_{\delta_{e^{i heta_n}}}| < 1 \} \subset \mathcal{R}(\mu).$$

To prove our assertion, suppose that $\mathcal{R}(\mu) \neq \mathcal{R}_0(\mu)$. Let $x \in \mathcal{R}(\mu) \setminus \mathcal{R}_0(\mu)$. Then there exists $\nu \in L^1_+(\mu)$ such that

$$(4.3) 0 < |\psi_{\nu}(x)| < 1.$$

It is sufficient to prove that $|\psi_{\delta_{e^{i\theta_n}}}(x)| < 1$ for some n. To prove this, suppose not. Then

$$|\psi_{\delta_{e^{i heta_n}}}(x)|=1 \quad ext{for every } n.$$

Let $\nu = \sum_{n=1}^{\infty} b_n \delta_{e^{i\theta_n}}$, where $b_n \geq 0$ for every n. By (4.3) and (4.4), $b_n > 0$ for infinitely many n. Without loss of generality, we may assume that $b_n > 0$ for every n. Since $\sum_{n=1}^{\infty} b_n < \infty$, there exists a sequence of increasing positive numbers $\{p_n\}_n$ such that $\sum_{n=1}^{\infty} p_n b_n < \infty$ and $p_n \to \infty$ as $n \to \infty$. Put $\sigma = \sum_{n=1}^{\infty} p_n b_n \delta_{e^{i\theta_n}}$. Then $\sigma \in L^1_+(\mu)$. For each positive integer k, put

$$u_k = \sum_{n=k}^\infty b_n \delta_{e^{i heta_n}}.$$

Then $\sigma \geq p_k \nu_k$ for every k. Hence by (4.4),

$$|\psi_{\sigma}(x)| \leq |\psi_{\nu_k}(x)|^{p_k} = |\psi_{\nu}(x)|^{p_k}$$

Since $p_k \to \infty$ as $k \to \infty$, by (4.3) we have $x \in Z(\psi_\sigma)$. Hence $x \in \mathcal{R}_0(\mu)$, this is a contradiction.

LEMMA 4.2. Let $\mu \in M_s^+$ and $e^{i\theta} \in \partial \Delta$ such that $\{|\psi_{\delta_{e^{i\theta}}}| < 1\} \subset Z(\psi_{\mu})$. Put $\mu_1 = \mu - \mu(\{e^{i\theta}\})\delta_{e^{i\theta}}$. Then $\{|\psi_{\delta_{e^{i\theta}}}| < 1\} \subset Z(\psi_{\mu_1})$.

Proof. For 0 < r < 1, let

$$b(z) = rac{\psi_{\delta_{e^{i heta}}}(z) - r}{1 - r\psi_{\delta_{i heta}}(z)}, \quad z \in \Delta.$$

Then b is an interpolating Blaschke product, see [6]. Let $\{w_n\}_n$ be the zeros of b. Then $\psi_{\delta_{e^{i\theta}}}(w_n) = r$ for every n. By our assumption, we have $\psi_{\mu_1} = 0$ on $\overline{\{w_n\}_n} \setminus \{w_n\}_n = Z(b)$. Hence by Lemma 2.2, $\{|b| < 1\} \subset Z(\psi_{\mu_1})$. Since $\{|b| < 1\} = \{|\psi_{\delta_{e^{i\theta}}}| < 1\}$, we get our assertion.

LEMMA 4.3. Let $\mu \in M_s^+$, -1 < R < 1, and $J = \{e^{i\theta}; \theta_0 < \theta < \theta_1\}$. Suppose that $J \cap S(\mu) = \emptyset$. If $\mu \perp \delta_{e^{i\theta_0}}$, then $|\psi_{\mu}(z)| \to 1$ as $|z| \to 1$, $z \in \partial \Delta_R(e^{i\theta_0})$ and $\theta_0 < \arg z < \theta_1$.

Proof. We may assume that $e^{i\theta_0} = 1$. It is not difficult to see that our assertion holds when $1 = e^{i\theta_0} \notin S(\mu)$. So we assume $1 \in S(\mu)$. Let $J_n = \{e^{i\theta}; -1/n < \theta < 0\}$. Since $1 \in S(\mu)$, $J \cap S(\mu) = \emptyset$, and $\mu \perp \delta_1$, we have $\|\mu_{|J_n}\| \neq 0$. Put $\mu_n = \mu_{|J_n}$ and $\mu'_n = \mu_{|\partial \Delta \setminus J_n}$. Then $\|\mu_n\| \to 0$ as $n \to \infty$ and $\mu = \mu_n + \mu'_n$ for every n.

To prove our assertion, let $\varepsilon > 0$ arbitrary. Then there exists a positive integer k such that

(4.5)
$$e^{-\frac{1+R}{1-R}||\mu_k||} > 1 - \varepsilon.$$

Since $1 \notin S(\mu'_k)$, $|\psi_{\mu'_k}(z)| \to 1$ as $|z| \to 1, z \in \partial \Delta_R(1)$. Hence there exists $r_0, 0 < r_0 < \theta_1/2$, such that

$$(4.6) |\psi_{\mu_k'}(z)| > 1 - \varepsilon \text{for } z \in \partial \Delta_R(1), 0 < \arg z < r_0.$$

For every $z \in \partial \Delta_R(1)$ with $0 < \arg z < r_0$, we have

$$\begin{split} |\psi_{\mu}(z)| &= |\psi_{\mu_k}(z)| |\psi_{\mu'_k}(z)| \\ &\geq |\psi_{\delta_1}(z)|^{\|\mu_k\|} |\psi_{\mu'_k}(z)| \qquad \text{by Lemma } 3.1 \\ &= e^{-\frac{1-R}{1-R}\|\mu_k\|} |\psi_{\mu'_k}(z)| \qquad \text{by Lemma } 2.3 \\ &> (1-\varepsilon)^2 \qquad \text{by } (4.5) \text{ and } (4.6). \end{split}$$

This shows our assertion.

Proof of Theorem 4.1. (i) \Rightarrow (ii) It is sufficient to prove (ii) for n = 1. For 0 < r < 1, let

$$b(z) = rac{\psi_{\delta_e i heta_1}(z) - r}{1 - r \psi_{\delta_e i heta_1}(z)}, \quad z \in \Delta.$$

Then by [6] b is an interpolating Blaschke product and

$$\psi_{\delta_{i\theta_1}} = r \quad \text{on } Z(b).$$

Since $\{|\psi_{\delta_{e^{i\theta_1}}}| < 1\} \subset \mathcal{R}(\mu), \ Z(b) \subset \mathcal{R}(\mu)$. By condition (i), for each $x \in Z(b)$ there exists $\sigma_x \in L^1_+(\mu)$ such that $\psi_{\sigma_x}(x) = 0$. By (4.7), we may assume that $\delta_{e^{i\theta_1}} \perp \sigma_x$. Since Z(b) is compact, there exist $\sigma_1, \ldots, \sigma_k \in L^1_+(\mu)$ such that $Z(b) \subset \bigcup_{j=1}^k \{|\psi_{\sigma_j}| < 1\}$ and $\delta_{e^{i\theta_1}} \perp \sigma_j$ for every j. Put $\lambda = \sum_{j=1}^k \sigma_j$. Then $\lambda \in L^1_+(\mu), \delta_{e^{i\theta_1}} \perp \lambda$, and

$$(4.8) Z(b) \subset \{|\psi_{\lambda}| < 1\}.$$

By Proposition 4.1, there exists $\nu \in L^1_+(\lambda)$ such that $\mathcal{M}_{e^{i\theta_1}} \cap \{|\psi_{\lambda}| < 1\} \subset Z(\psi_{\nu})$. Since $\lambda \in L^1_+(\mu)$, $\nu \in L^1_+(\mu)$. Since $Z(b) \subset \mathcal{M}_{e^{i\theta_1}}$, by (4.8) we have $Z(b) \subset Z(\psi_{\nu})$. Hence by Lemma 2.2, $\{|b| < 1\} \subset Z(\psi_{\nu})$. Since $\{|b| < 1\} = \{|\psi_{\delta_{\beta\theta_1}}| < 1\}$, condition (ii) holds.

(ii) \Rightarrow (i) It is easy to see that $\mathcal{R}(\mu) = \mathcal{R}(\mu_c) \cup \mathcal{R}(\mu_d)$ and $\mathcal{R}_0(\mu) = \mathcal{R}_0(\mu_c) \cup \mathcal{R}_0(\mu_d)$. Hence

$$\begin{split} \mathcal{R}(\mu) &= \mathcal{R}_0(\mu_c) \cup \mathcal{R}(\mu_d) & \text{by Proposition 4.2} \\ &= \mathcal{R}_0(\mu_c) \cup \left(\mathcal{R}_0(\mu_d) \cup \bigcup_{n=1}^{\infty} \{|\psi_{\delta_e i \theta_n}| < 1\}\right) & \text{by Lemma 4.1} \\ &\subset \mathcal{R}_0(\mu) & \text{by condition (ii).} \end{split}$$

Thus we get condition (i).

- $(ii) \Rightarrow (iii)$ is trivial.
- (iii) \Rightarrow (ii) It is sufficient to prove for the case n=1. We may assume that $e^{i\theta_1}=1$. Let

$$\Gamma_+ = \partial \Delta_0(1) \cap \{\operatorname{Im} z > 0\} \quad \text{and} \quad \Gamma_- = \partial \Delta_0(1) \cap \{\operatorname{Im} z < 0\}.$$

We shall show the existence of $\tau, \tau' \in L^1_+(\mu)$ such that

$$(4.9) \psi_{\tau}(z) \to 0 \text{as } |z| \to 1, z \in \Gamma_{+}$$

and

$$(4.10) \psi_{\tau'}(z) \to 0 \text{as } |z| \to 1, z \in \Gamma_{-}.$$

We prove only (4.9). In the same way, we can prove (4.8). By condition (iii), there exists $\lambda \in M_s^+$ such that

$$(4.11) \{|\psi_{\delta_1}| < 1\} \subset Z(\psi_{\lambda}) \text{ and } S(\lambda) \subset S(\mu).$$

By Lemma 4.2, we may assume that $\lambda \perp \delta_1$. Since $|\psi_{\delta_1}(z)| \to e^{-1}$ as $|z| \to 1, z \in \Gamma_+$, by (4.11) we have

$$(4.12) \psi_{\lambda}(z) \to 0 \text{as } |z| \to 1, z \in \Gamma_{+}.$$

Then by Lemma 4.3, we may further assume that

$$S(\lambda) \subset J = \{e^{i\theta}; 0 < \theta < r_1\}$$
 for some $0 < r_1 < 1$

and $\lambda(\{e^{i\theta}; 0 < \theta < \varepsilon\}) > 0$ for every $0 < \varepsilon < r_1$. Then we can take a sequence of decreasing numbers $\{r_n\}_n, r_n > 0$, such that $\lambda(\{e^{ir_n}\}) = \mu(\{e^{ir_n}\}) = 0$ and $\lambda(J_n) \neq 0$ for every n, where $J_n = \{e^{i\theta}; r_{n+1} < \theta < r_n\}$. Put

$$(4.13) \lambda_n = \lambda_{|J_n}.$$

Then we have

(4.14)
$$\lambda = \sum_{n=1}^{\infty} \lambda_n, \quad \|\lambda\| = \sum_{n=1}^{\infty} \|\lambda_n\|, \quad \text{and} \quad \|\lambda_n\| \neq 0.$$

Let $\xi(t)$, 0 < t < 1, be a one to one continuous map onto Γ_+ such that $\xi(t) \to 1$ as $t \to 0$. Then by (4.12),

(4.15)
$$\psi_{\lambda}(\xi(t)) \to 0 \quad \text{as } t \to 0.$$

Since $1 \notin S(\lambda_1)$, we also have

(4.16)
$$\psi_{\lambda-\lambda_1}(\xi(t)) \to 0 \quad \text{as } t \to 0.$$

Let $\{\varepsilon_n\}_n$ be a sequence of positive numbers such that $\varepsilon_n \to 0$ as $n \to \infty$. By (4.15), there exists c_1 , $0 < c_1 < 1$, such that

$$(4.17) |\psi_{\lambda}(\xi(t))| < \varepsilon_1 \text{for } 0 < t \le c_1.$$

By (4.11) and (4.13), we have $S(\lambda_1) \subset S(\mu_{|J_1})$. Then it is not difficult to see the existence of a sequence $\{\mu_{1,k}\}_k$ in $L^1_+(\mu_{|J_1})$ such that $\|\mu_{1,k}\| \leq \|\lambda_1\|$ and $\mu_{1,k} \to \lambda_1$ in the weak*-topology of $M(\partial \Delta)$. We note that $|\psi_{\mu_{1,k}}| \to |\psi_{\lambda_1}|$ uniformly on compact subsets of Δ . Put $\mu_1 = \mu_{1,k}$ for sufficiently large k, and then put

(4.18)
$$\tau_1 = \mu_1 + \sum_{j=2}^{\infty} \lambda_j.$$

By (4.14), (4.16), and (4.17), we may assume moreover that $|\psi_{\tau_1}(\xi(t))| < \varepsilon_1$ for $0 < t \le c_1$. Since $1 \notin S(\lambda_1) \cup S(\mu_1), \ |\psi_{\lambda_1}(\xi(t))| \to 1$ and $|\psi_{\mu_1}(\xi(t))| \to 1$ as $t \to 0$. Hence by (4.16), $\psi_{\tau_1}(\xi(t)) \to 0$ as $t \to 0$. Then take c_2 such that $0 < c_2 < c_1$ and $|\psi_{\tau_1}(\xi(t))| < \varepsilon_2$ for $0 < t \le c_2$.

In the same way, there exists $\mu_2 \in L^1_+(\mu_{|J_2})$ such that $\|\mu_2\| \leq \|\lambda_2\|$ and $|\psi_{\tau_2}(\xi(t))| < \varepsilon_k$ for $0 < t \leq c_k, k = 1, 2, 3$, where $\tau_2 = \mu_1 + \mu_2 + \sum_{j=3}^{\infty} \lambda_j$. We note that $\psi_{\tau_2}(\xi(t)) \to 0$ as $t \to 0$. Repeat this process. Then we get sequences of measures $\{\mu_n\}_n$ and $\{\tau_n\}_n$, and a sequence of decreasing numbers $\{c_n\}_n$ such that

$$(4.19) c_n \to 0 as n \to \infty,$$

(4.22)
$$\tau_n = \sum_{j=1}^n \mu_j + \sum_{j=n+1}^\infty \lambda_j,$$

and

$$(4.23) |\psi_{\tau_n}(\xi(t))| < \varepsilon_k \text{for } 0 < t \le c_k, \ k = 1, 2, \dots, n+1.$$

Let

$$\tau = \sum_{j=1}^{\infty} \mu_j.$$

Then by (4.14), (4.20) and (4.21), $\|\tau\| < \infty$ and $\tau \in L^1_+(\mu)$. Also by (4.22) and (4.24), $\|\tau - \tau_n\| \to 0$ as $n \to \infty$. Hence by (4.23), $|\psi_{\tau}(\xi(t))| \le \varepsilon_k$, $0 < t \le c_k$, for every k. By (4.19), we get (4.9).

Now we prove the existence of $\nu \in L^1_+(\mu)$ such that

$$(4.25) {|\psi_{\delta_1}| < 1} \subset Z(\psi_{\nu}).$$

Let

$$b(z)=rac{\psi_{\delta_1}(z)-e^{-1}}{1-e^{-1}\psi_{\delta_1}(z)},\quad z\in\Delta.$$

Then by [6], b is an interpolating Blaschke product with zeros $\{z_n\}_n$ such that $z_n \in \partial \Delta_0(1)$ and $z_n \to 1$. Let

$$\nu = \tau + \tau' \in L^1_+(\mu).$$

Then by (4.9) and (4.10), $\psi_{\nu}(z_n) \to 0$ as $n \to \infty$. Hence $Z(b) \subset Z(\psi_{\nu})$ and by Lemma 2.2, $\{|b| < 1\} \subset Z(\psi_{\nu})$. Since $\{|b| < 1\} = \{|\psi_{\delta_1}| < 1\}$, we get (4.25).

The following follows from Theorem 4.1.

COROLLARY 4.1. Let $\mu \in M_s^+$ and $\mu = \mu_c + \mu_d$, where $\mu_c \in M_{s,c}^+$ and $\mu_d \in M_{s,d}^+$. Suppose that $\mathcal{R}(\mu) = \mathcal{R}_0(\mu)$. Then

- (i) $S(\mu)$ does not contain any isolated points.
- (ii) If $\nu \in L^1_+(\mu)$ and $S(\nu) = S(\mu)$, then $\mathcal{R}(\nu) = \mathcal{R}_0(\nu)$.
- (iii) If $\lambda \in M_{s,c}^+$ and $S(\lambda) = S(\mu)$, then $\mathcal{R}(\lambda + \mu_d) = \mathcal{R}_0(\lambda + \mu_d)$.

We note that for $\mu \in M_s^+$ with $S(\mu) \neq \partial \Delta$, there exists $\lambda \in M_s^+$ such that $S(\lambda) = S(\mu)$ and $\mathcal{R}(\lambda) \neq \mathcal{R}_0(\lambda)$. For, there is an open subarc $J = \{e^{i\theta}; \theta_0 < \theta < \theta_1\}$ such that $J \cap S(\mu) = \emptyset$ and $e^{i\theta_0} \in S(\mu)$. Put $\lambda = \mu + \delta_{e^{i\theta_0}}$. Then $S(\lambda) = S(\mu)$. By Lemma 4.3, we have $\{|\psi_{\delta_{e^{i\theta_0}}}| < 1\} \not\subset \mathcal{R}_0(\lambda)$. Hence by Theorem 4.1, $\mathcal{R}(\lambda) \neq \mathcal{R}_0(\lambda)$ From Theorem 4.1, we have the following problem.

PROBLEM 4.1. Characterize closed subsets E of $\partial \Delta$ with $1 \in E$ satisfying the following condition; there exists $\mu \in M_s^+$ such that $S(\mu) \subset E$ and $\{|\psi_{\delta_1}| < 1\} \subset Z(\psi_{\mu})$.

5. Discrete measures

When μ is a discrete measure, we have other equivalent conditions on μ such that $\mathcal{R}(\mu) = \mathcal{R}_0(\mu)$.

THEOREM 5.1. Let $\mu = \sum_{n=1}^{\infty} a_n \delta_{e^{i\theta_n}} \in M_{s,d}^+$, where $a_n > 0$ for every n. Then the following conditions are equivalent.

- (i) $\mathcal{R}(\mu) = \mathcal{R}_0(\mu)$.
- (ii) For every n, there exists $\nu_n \in L^1_+(\mu)$ such that $\{|\psi_{\delta_{e^{i\theta_n}}}| < 1\} \subset Z(\psi_{\nu_n})$.
- (iii) For every n, there exists $\lambda_n \in M_s^+$ such that $S(\lambda_n) \subset S(\mu)$ and $\{|\psi_{\delta_{si\theta_n}}| < 1\} \subset Z(\psi_{\lambda_n})$.
- (iv) There exists $\nu \in L^1_+(\mu)$ such that $\{|\psi_{\mu}| < 1\} \subset Z(\psi_{\nu})$.
- (v) There exists $\lambda \in M_s^+$ such that $S(\lambda) = S(\mu)$ and $\{|\psi_{\mu}| < 1\} \subset Z(\psi_{\lambda})$.

Proof. (i) ⇔ (ii) ⇔ (iii) follow from Theorem 4.1.

 $(iv) \Rightarrow (v) \Rightarrow (iii)$ are trivial.

(ii) \Rightarrow (iv) By condition (ii), there exists $\nu_n \in L^1_+(\mu)$ such that

(5.1)
$$\{|\psi_{\delta,i\theta_n}| < 1\} \subset Z(\psi_{\nu_n}) \text{ for every } n.$$

Since $Z(\psi_{\nu_n}) = Z(\psi_{c\nu_n})$ for c > 0, we may assume that $\sum_{n=1}^{\infty} \|\nu_n\| < \infty$. Let

$$\lambda = \sum_{n=1}^{\infty} \nu_n.$$

Then $\lambda \in L^1_+(\mu)$, so that we can write λ as

(5.3)
$$\lambda = \sum_{n=1}^{\infty} b_n \delta_{e^{i\theta_n}} \quad \text{and} \quad \sum_{n=1}^{\infty} |b_n| < \infty.$$

Hence there exists a sequence of increasing positive integers $\{p_n\}_n$ such that

$$(5.4) \sum_{n=1}^{\infty} p_n(a_n + b_n) < \infty \quad \text{and} \quad p_n \to \infty \quad \text{as } n \to \infty.$$

Let

(5.5)
$$\nu = \sum_{n=1}^{\infty} p_n (a_n + b_n) \delta_{e^{i\theta_n}}.$$

Then by (5.4), $\nu \in L^1_+(\mu)$. To prove condition (iv), let $x \in \mathcal{M} \setminus \Delta$ such that

$$|\psi_{\mu}(x)| < 1.$$

We shall prove that

$$(5.7) x \in Z(\psi_{\nu}).$$

By (5.2), (5.3), and (5.5), we have $\nu \geq \sum_{n=1}^{\infty} \nu_n \geq \nu_n$, so that $|\psi_{\nu}| \leq |\psi_{\nu_n}|$ on $\mathcal{M} \setminus \Delta$ for every n. If $|\psi_{\delta_{e^{i\theta_n}}}(x)| < 1$ for some n, then by (5.1) we obtain (5.7).

Next, suppose that

(5.8)
$$|\psi_{\delta_{e^{i\theta_n}}}(x)| = 1 \quad \text{for every } n.$$

Put

$$u_n' = \sum_{j=n}^\infty p_j (a_j + b_j) \delta_{e^{i heta_j}} \quad ext{and} \quad \mu_n' = \sum_{j=n}^\infty a_j \delta_{e^{i heta_j}}.$$

Then
$$\nu'_n \ge p_n \sum_{j=n}^{\infty} a_j \delta_{e^{i\theta_j}} = p_n \mu'_n$$
. Hence (5.9) $|\psi_{\nu'_n}| \le |\psi_{\mu'_n}|^{p_n}$ for every n .

Therefore

$$\begin{aligned} |\psi_{\nu}(x)| &= |\psi_{\nu'_{n}}(x)| \prod_{j=1}^{n-1} |\psi_{\delta_{e^{i\theta_{j}}}}(x)|^{p_{j}(a_{j}+b_{j})} \\ &= |\psi_{\nu'_{n}}(x)| \quad \text{by (5.8)} \\ &\leq |\psi_{\mu'_{n}}(x)|^{p_{n}} \quad \text{by (5.9)} \\ &= |\psi_{\mu}(x)|^{p_{n}} \quad \text{by (5.8)}. \end{aligned}$$

Since $p_n \to \infty$, by (5.6) we have $\psi_{\nu}(x) = 0$. Thus we get (5.7).

We show the existence of positive discrete measures which satisfy conditions in Theorem 5.1.

EXAMPLE 5.1. Let $\{e^{i\theta_n}\}_n$ be a dense subset of $\partial \Delta$ and $\{a_n\}_n$ a sequence of positive numbers such that $\sum_{n=1}^{\infty} a_n < \infty$. Let $\mu = \sum_{n=1}^{\infty} a_n \delta_{e^{i\theta_n}}$. Then $S(\mu) = \partial \Delta$. By Theorem 2.1, $\mathcal{R}(\mu) = \mathcal{R}_0(\mu)$.

EXAMPLE 5.2. By Gorkin [5], for every $\nu \in M_s^+$ there exists $\lambda \in M_{s,d}^+$ such that $\{|\psi_{\nu}| < 1\} \subset Z(\psi_{\lambda})$, where we can take λ such as $\|\lambda\|$ is sufficiently small. We use this fact inductively.

Let $\nu_0 \in M_{s,d}^+$ with $\|\nu_0\| \le 1$. Then there exists $\nu_1 \in M_{s,d}^+$ such that $\{|\psi_{\nu_0}| < 1\} \subset Z(\psi_{\nu_1})$ and $\|\nu_1\| \le 1/2$. Then there exists $\nu_2 \in M_{s,d}^+$ such that

$$\{|\psi_{\nu_1}| < 1\} \subset Z(\psi_{\nu_2}) \quad \text{and} \quad \|\nu_2\| \le (1/2)^2.$$

By induction, we can get a sequence $\{\nu_k\}_k$ in $M_{s,d}^+$ such that

$$(5.10) {|\psi_{\nu_{k-1}}| < 1} \subset Z(\psi_{\nu_k})$$

and $\|\nu_k\| \le (1/2)^k$. Let

$$\mu = \sum_{k=0}^{\infty} \nu_k.$$

Then $\mu \in M_{s,d}^+$ and $\nu_k \in L_+^1(\mu)$ for every k. Suppose that $\mu(\{e^{i\theta_0}\}) > 0$. Then there exists a positive integer k such that $\nu_k(\{e^{i\theta_0}\}) \neq 0$. Then $\{|\psi_{\delta_e^{i\theta_0}}| < 1\} \subset \{|\psi_{\nu_k}| < 1\}$. Hence by (5.10), we have $\{|\psi_{\delta_e^{i\theta_0}}| < 1\} \subset Z(\psi_{\nu_{k-1}})$. Therefore μ satisfies condition (ii) of Theorem 5.1.

Start from $\nu_0 = \delta_1$. Then by the above construction of μ , we can prove the existence of $\mu \in M_{s,d}^+$ satisfying conditions in Theorem 5.1 and $d\theta(S(\mu)) = 0$.

From Proposition 4.2 and Theorem 5.1, we have the following problem on continuous measures.

PROBLEM 5.1. Let $\mu \in M_{s,c}^+$. Does there exist $\nu \in L^1_+(\mu)$ such that $\{|\psi_{\mu}| < 1\} \subset Z(\psi_{\nu})$?

The following is a partial answer.

PROPOSITION 5.1. Let $\mu \in M_{s,c}^+$. Suppose that $S(\mu) = \{e^{i\theta}; \theta_0 \leq \theta \leq \theta_1\}, \theta_0 < \theta_1$. Then there exists $\nu \in L_+^1(\mu)$ such that $\{|\psi_\mu| < 1\} \subset Z(\psi_\nu)$.

Proof. When $S(\mu) = \partial \Delta$, by Theorem 2.1 we have our assertion. So we assume that $S(\mu) \neq \partial \Delta$. Let $J = \{e^{i\theta}; \theta_0 \leq \theta \leq \theta_1\}$ and $\Omega_0 = \{re^{i\theta}; 0 < r < 1, \theta_0 \leq \theta \leq \theta_1\}$. As mentioned before, there exists an interpolating Blaschke product b with zeros $\{z_k\}_k$ such that $z_k \neq 0$ for every k and

$$\{|\psi_{\mu}| < 1\} = \{|b| < 1\}.$$

Then

$$(5.12) cl\{z_k\}_k \setminus \{z_k\}_k = J$$

and there exists a positive number r_0 such that

$$(5.13) |\psi_{\mu}(z_k)| \le r_0 < 1 for every k.$$

Put

$$\{\zeta_n\}_n = \{z_k; z_k \in \Omega_0\} \text{ and } \{\xi_n\}_n = \{z_k; z_k \notin \Omega_0\}.$$

In the same way as the proof of Theorem 2.1, there exists $\nu_1 \in L^1_+(\mu)$ such that

(5.15)
$$\psi_{\nu_1}(\zeta_n) \to 0 \quad \text{as } n \to \infty.$$

Next, we prove the existence of $\nu_2 \in L^1_+(\mu)$ such that

(5.16)
$$\psi_{\nu_2}(\xi_n) \to 0 \quad \text{as } n \to \infty.$$

Take a sequence of strictly increasing closed subarcs $\{J_n\}_n$ of J such that $cl(\bigcup_{n=1}^{\infty} J_n) = J$. Let $J_0 = \emptyset$. Put $I_n = J_n \setminus J_{n-1}$ and $\mu_n = \mu_{|I_n}$. Then

$$\|\mu_n\| > 0$$
,

$$\mu = \sum_{n=1}^{\infty} \mu_n,$$

and there exists a sequence of increasing positive numbers $\{p_n\}_n$ such that

(5.18)
$$\sum_{n=1}^{\infty} p_n \|\mu_n\| < \infty \quad \text{and} \quad p_n \to \infty \quad \text{as } n \to \infty.$$

Let

(5.19)
$$\nu_2 = \sum_{n=1}^{\infty} p_n \mu_n.$$

Then $\nu_2 \in L^1_+(\mu)$. By (5.12) and (5.14), $cl\{\xi_n\}_n \setminus \{\xi_n\}_n \subset \{e^{i\theta_0}, e^{i\theta_1}\}$. Hence we have

(5.20)
$$|\psi_{\mu_k}(\xi_n)| \to 1 \text{ as } n \to \infty \text{ for every } k.$$

By (5.18) and (5.19), we have $\nu_2 \geq p_k \sum_{n=k}^{\infty} \mu_n$. Hence by (5.17) and (5.20), $|\psi_{\nu_2}| \leq |\psi_{\mu}|^{p_k}$ on $\overline{\{\xi_n\}_n} \setminus \{\xi_n\}_n$. By (5.13), $|\psi_{\mu}| \leq r_0$ on $\overline{\{\xi_n\}_n} \setminus \{\xi_n\}_n$. Therefore by (5.18), $\psi_{\nu_2} = 0$ on $\overline{\{\xi_n\}_n} \setminus \{\xi_n\}_n$. Thus we get (5.16).

Put $\nu = \nu_1 + \nu_2$. Then $\nu \in L^1_+(\mu)$, and by (5.14), (5.15), and (5.16) we have that $\psi_{\nu}(z_n) \to 0$ as $n \to \infty$. Hence by Lemma 2.2, $\{|b| < 1\} \subset Z(\psi_{\nu})$. Thus by (5.11), we have our assertion.

References

- S. Axler and P. Gorkin, Divisibility in Douglas algebras, Michigan Math. J. 31 (1984), 89-94.
- [2] L. Carleson Interpolations by bounded analytic functions and the corona problem, Ann. of Math. 76 (1962), 547-559.
- [3] S.-Y. Chang, A characterization of Douglas subalgebras, Acta Math. 137 (1976), 81–89.
- [4] J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- [5] P. Gorkin, Singular functions and division in $H^{\infty} + C$, Proc. Amer. Math. Soc. 92 (1984), 268–270.
- [6] P. Gorkin and K. Izuchi, Some counterexample in subalgebras of $L^{\infty}(D)$, Indiana University Math. J. 40 (1991), 1301–1313.
- [7] C. Guillory, K. Izuchi and D. Sarason, Interpolating Blaschke products and division in Douglas algebras, Proc. Roy. Irish Acad. Sect. A 84 (1984), 1-7.
- [8] C. Guillory and D. Sarason, Division in $H^{\infty} + C$, Michigan Math. J. 28 (1981), 173–181.

- [9] K. Hoffman, Banach Spaces of Analytic Functions, Prentice Hall, Englewood Cliffs, N. J., 1962.
- [10] _____, Bounded analytic functions and Gleason parts, Ann. of Math. 86 (1967), 74–111.
- [11] K. Izuchi, Countably generated Douglas algebras, Trans. Amer. Math. Soc. 299 (1987), 171-192.
- [12] _____, Weak infinite powers of Blaschke products, J. Anal. Math. 75 (1998), 135-154.
- [13] D. Marshall, Subalgebras of L^{∞} containing H^{∞} , Acta Math. 137 (1976), 91–98.
- [14] D. J. Newman, Some remarks on the maximal ideal structure of H^{∞} , Ann. of Math. 70 (1959), 438-445.
- [15] S. Ziskind, Interpolating sequences and Shilov boundary of $H^{\infty}(\Delta)$, J. Funct. Anal. 21 (1976), 380–388.

Keiji Izuchi
Department of Mathematics
Niigata University
Niigata 950-2181, Japan
E-mail: izuchi@math.sc.niigata-u.ac.jp

Norio Niwa
Department of Mathematical Science
Graduate School of Science and Technology
Niigata University
Niigata 950-2181, Japan
E-mail: niwa@scux.sc.niigata-u.ac.jp