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SINGULAR INNER FUNCTIONS OF L-TYPE
KEe151 IzucHI* AND NORIO NIwA

ABSTRACT. Let M be the maximal ideal space of the Banach al-
gebra H*® of bounded analytic functions on the open unit disc A.
For a positive singular measure g on 0A, let L (n) be the set of
measures v with 0 < v < p and v, the associated singular inner
functions. Let R(u) and Ro(u) be the union sets of {|,| < 1}
and {¥, = 0} in M\ A, v € L% (u), respectively. It is proved
that if S(u) = 0A, where S(u) is the closed support set of p, then
R(1) = Ro(u) = M\ (AU M(L*(8A))) and L*(0A) is generated
by H® and %,,v € L} (u). It is proved that d6(S(u)) = 0 if and
only if there exists a Blaschke product b with zeros {z,}, such that
R(p) < {|b| < 1} and S(p) coincides with the set of cluster points of
{zn}n. While, we prove that p is a sum of finitely many point mea-
sures if and only if there exists another positive singular measure A
such that R(u) C {|¢»] < 1} and S(A) = S(u). Also it is studied
conditions on u for which R(u) = Ro(u).

1. Introduction

Let H® be the Banach algebra of bounded analytic functions on the
open unit disc A. We denote by M = M(H*) the maximal ideal space
of H*®, the space of nonzero multiplicative linear functionals of H* with
the weak*-topology. Considering point evaluation, we may consider that
A C M and A is an open subset of M. Carleson’s corona theorem
[2] says that A is dense in M. Identifying a function in H* with its
Gelfand transform, we may consider that H® is the closed subalgebra
of C(M), the space of continuous functions on M. We also identify
a function in H® with its boundary function. Then we may consider
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that H* is an (essentially) supremum norm closed subalgebra of L%,
the usual Lebesgue space on the unit circle A. For a subset F' of L*®,
we denote by H®[F'] the closed subalgebra generated by H* and F. We
may consider that the maximal ideal space M(L*) of L*™ as a subset of
M and M (L) as the Shilov boundary of H*. A function f in H*® is
called inner if |f| = 1 on M(L*). For a function f in H*®, we put

{Ifl <1} = {z e M\A;|f(z)| <1} and Z(f) = {z € M\A; f(z) = 0}.

We note that these sets are considered in M \ A. For a subset E of M,
we denote by E the weak*-closure of F in M. On the other hand, for a
subset F of A, we denote by clF the closure of F' in the complex plane.
See [10] for the study of the structure of M.

For a sequence {2z}, in A satisfying 3 . ,(1 — |2z,|) < o0, we can
define a function

A.
H |zn|1——zn » Z€

Then b is an inner functlon and called a Blaschke product with zeros
{zn}n- Put S(b) = cl{za}n \ {2n}n C OA. Then S(b) is the set of points
e € OA on which b can not be extended analytically. Since > o (1 —
|2,]) < oo, there is a sequence of positive integers p = (p1, p,---) such
that

an(l —|zp|) <00 and p, » o0 asn— 0.

n=1
We denote by P(b) the set of sequences p as above. Then for p =
(p1, P2, -) € P(b) we have an associated Blaschke product defined by

0 = Pn
—Zn Z2— Z
¥ (z) = - ), zeA.
(=11 ( 2] 1—Enz> ‘

n=1

In [12], the first author called Blaschke products b°,p € P(b), weak
infinite powers of b and studied them. Let

R(b) = J{I¥I<1}ipeP®)} and Ro(b) = J{Z(#);p € PO)}-
It is easy to see that R(b) = Ro(b). The first author proved the following
theorems.

THEOREM A. Let b be a Blaschke product. Then the following con-
ditions are equivalent.

(i) S(b) = BA.
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(i) R(b) = M\(A U M(L®)).
(iii) L® = H®[b*;p € P(b)].

Let df be the arc length measure on JA.

THEOREM B. Let b be a Blaschke product. Then the following con-
ditions are equivalent.
(i) d9(S(b)) = 0.
(i) There is a Blaschke product B such that S(B) = S(b) and R(b) C
{|B| < 1}. ’
(ili) There is a Blaschke product B such that S(B) = S(b) and R(b) C
Z(B).
(iv) There is a Blaschke product B such that S(B) = S(b) and H*[b?,

p e P(b)] c H[B).

In this paper, we investigate singular inner function’s versions of the
above two theorems. We denote by M(9A) the Banach space of bounded
regular Borel measures on A with the total variation norm. Since
M(0A) is the dual space of C(OA), the space of continuous functions on
04, we may consider the weak*-topology on M(9A). Let M} be the set
of positive (nonzero) singular measures in M(JA) with respect to the
Lebesgue measure on 6A.

Let P,(e®?) be the Poisson kernel for z € A, that is,

e + 2

P,(e®) = Re —
(e”) S

For each p € M}, let

Yu(2) = exp <-/6 e’ + zd,u(eio)) , z€A.

N

Then 1, is inner and called a singular inner function. We note that

[u(2)| = exp <— /3A Pz(eig)du(eio)) , z€A.

We denote by S(u) the closed support set of u. Then S(u) is the set of
points e? € A on which 1, can not be extended analytically, see [4, 9].
Let

Liwy={reM 0<v<pu,v#0}
Then we have a family of singular inner functions {¢,;v € L! (u)}. We
call these functions associated singular inner functions of L!-type for the
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measure . We may expect that these functions play the same role as
weak infinite powers of a Blaschke product. We put

R(w)=|J {{l¥.] < 1};v € Li(1)} and Ro(w)=|J{Z(w);v € L} (1)}

In section 2, we prove a singular inner function’s version of Theorem
A. In section 3, we study a singular inner function’s version of Theorem
B, and prove that d9(S(u)) = 0 if and only if there is a Blaschke product
B such that S(B) = S(u) and R(u) C Z(B). Also, we prove that for
p € M, if there exists A € M;" such that S(A) = S(u) and R(p) C
{|4s] < 1}, then S(u) is a finite set, and there are no A € M;" such that
S()) = S(4) and R(u) C Z()-

In the study of singular inner functions of L!-type, we will find some
difference of properties between Blaschke products and singular inner
functions. We have R(b) = Ry(b) for every Blaschke product b, but
R(u) # Ro(p) for some u € M. For e € OA, we denote by &0 the
unit point mass at e € OA. Then we have Ry(0e) G R(J.0). In section
4, we study conditions on p € M, for which R(x) = Ro(x). In section
5, we study especially on discrete measures.

We denote by M, and M, :’ , the sets of continuous and discrete mea-

sures in M, respectively.

2. Singular inner functions of L'-type

First, we prove the following theorem.

THEOREM 2.1. Let u € M} such that S(u) = OA. Then for every
Blaschke product b, there exists v € L} (u) such that {|b] < 1} C Z(¢).

We note that in [5] Gorkin proved that for a Blaschke product b there
exists a discrete measure u € M, such that {|b| < 1} C Z(¢,). To
prove our theorem, we need some facts. For each z € A with |z} # 0,
we have P,(e") < (1 + |2])/(1 — |2|) for every e € OA and P,(z/|z]) =
(1+]2])/(1 —|2|). Hence there exists an open subarc J of OA such that
z/|z| € Jand P, > 1/(1 — |2]) on J.

LEMMA 2.1. Let {z,}, be a sequence in A such that Y, (1—|za|) <
oo and |z,| # 0 for every n. Let {p,}, be a sequence of positive numbers
such that Y o pa(l — |2a]) < 00 and p, — o0 as n — oo. Let J, be
an open subarc of A such that z,/|2,| € J, and P,, > 1/(1 — |za|) on
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Jn. Let p € M such that p =Y pn, pn € M, S(u,) C clJ,, and
litnll > pn(1 — |24]) for every n. Then ¢,(z,) — 0 as n — co.

Proof. By our assumption, we have

/ P, (e”)dp(e”) > / P, (e®)dpn(e®)
oA

JIn
> |lpall /(1 = |2al)
2 Pn-

Since p, — 00 as n — 00,

[¥u(2n)| = exp (— /aA Pz,.(ew)du(ew)> —0 asn— 0. 5

A Blaschke product b and its zeros {2,}, are called interpolating if
for every bounded sequence of complex numbers {a,},, there exists a
function f € H* such that f(z,) = a, for every n. It is known that
if b is an interpolating Blaschke product, Z(b) = {z,}, \ {z1}n, see [9,
p- 205]. In the study of H*, interpolating Blaschke products play an
important role, see [4, 11].

By [1, 7], we have the following, see also [5].

LEMMA 2.2. Letb be an interpolating Blaschke product and p € M.
If Z(b) C Z(3,), then {|b] < 1} C Z(¥,).

Proof of Theorem 2.1. It is known that there is an interpolating Blas-
chke product ¢ such that {|¢| < 1} = {|b] < 1}, see [15] or [5]. Hence
we may assume that b is interpolating with zeros {z,}, and |z,| # 0
for every n. Since Y oo (1 — |2n]) < o0, there is a sequence of positive
numbers {p,}, such that 3 >> p,(1—]2,|) < co and p, — 00 as n — co.
For each n, take an open subarc J, of A such that z,/|z,| € J, and
P, > 1/(1 - |z]) on J,. Since S(u) = 9A, ||y, || # 0, where py;, is the
restriction measure of p on J,. Put

[ = pn(l _ |Z7l|)u'|.]n and v = iu
T - - .
[l42, 1 el

Then
I <)l = pall = J2a]) < 00.
n=1 n=1
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Since p,, € L (1), we have v € L (). Also it is clear that S(u,) C clJ,.
Then by Lemma 2.1, ¢,(z,) — 0 as n — o0, so that Z(b) C Z(¢,).
Hence by Lemma 2.2, we obtain our assertion. 0

As applications of Theorem 2.1, we have the following corollaries, see
[12]. Here we note that by [8] if b is a Blaschke product and p € M}
such that {|b| < 1} C Z(¢,), then ¢,b € H® + C(dA).

COROLLARY 2.1. Let u € M such that S(u) = OA. Then for f €
L%, there exists v € L () such that ¢, f € H® + C(0A).

COROLLARY 2.2. Let u € M} such that S(pu) = OA. Then for f €
L* ande > 0, there exists v € L. (u) and h € H*™ such that |4, f—h| <
€.

Proof. Use Corollary 2.1 and a fact that if g € C(0A) and u € M,
then ||gyp + H®|| — 0 as n — co. O

The following is the singular inner function’s version of Theorem A.

THEOREM 2.2. Let p € M. Then the following assertions are equiv-
alent.
(i) S(u) = oA
(i) Ra(1) = M\(A U M(L™).
(iii) R(p) = M\(AU M(L*)).
(iv) L% = H®[gh,;v € Li(p)].
Proof. (i) = (ii) Suppose that S(u) = 0A. For each Blaschke prod-
uct b, by Theorem 2.1 there exists v € L. (p) such that {|b] < 1} C
Z(1,). By Newman’s Theorem [14],

U {{|b| < 1};b is a Blaschke product} = M\ (A U M(L*)),

hence (ii) holds.

(i) = (iii) follows from Ro(x) C R(u) C M\ (AU M(L*>)).

(i) = (i) Suppose that S(x) # OA. Then 1, can be extended
analytically at each point in A \ S(x) and |¢,] = 1 on OA \ S(p).
Hence it is not difficult to see that R(u) # M\ (A U M(L*)).

(iit) & (iv) This follows from the Chang and Marshall Theorem [3,
13]. O

Next, we study R(u) when S(u) # 0A. For —1 < R < 1 and
e € OA, let

Ar(e®) = {z € A;|z — (1+ R)e®/2| < (1 — R)/2}.
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LEMMA 2.3. Let —1 < R < 1 and ® € OA. Then
An(e”) = {2 € Ay (2)] < e TR}
Proof. This follows from that

1 — |22 - 1+R
le? —22 7 1-R’ 0

s, (2)| < e~ if and only if

The following theorem is the singular inner function’s version of [12,
Theorem 4.1].

THEOREM 2.3. Let 4 € M} and €% € S(u). Then there exists
v € L} (i) such that ¢,(re®) - 0asr — 1,0 <r < 1.

Proof. We may assume that e = 1. Let {R,}, be a sequence of
increasing positive numbers such that > > (1-R,) < coand 0 < R, <
1. Then there exists another sequence of positive numbers {p,}, such
that

(e ¢]
(2.1) an(l-Rn)<oo and p, —» 00 asn — o0.
n=1

We have (R,, R,.1] C Ag,(1). Hence by Lemma 2.3,

(2:2) s, < e on (B, Rasi).

For each positive integer j, let J; = {e¥ € 0A;|f] < 1/j}. Since 1 =
e € S(u), |zl # 0. Put

(2.3) i = /sl

Then p; converges to §; as j — oo in the weak*-topology of M (0A),
so that 9,,(2z) — ¥s,(2) uniformly on compact subsets of A. Hence for
each positive integer n, by (2.2) there exists a positive integer j, such
that

(2.4) | < e on (Ry, Ropal.
Let

e ]

v = Zpk(l — Ry)u;,.-

k=1
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Then by (2.1) and (2.3), v € L (u), and for every r € (R,, Rn11] we
have

|, (r)] = H |, ()P0

1/)/% (T) |pn(l—Rn)
< e(_%ﬁﬁgﬂ)pn(l—f?n) by (2.4).

Hence
sup |¢u(7')‘ < e Pr(1+Ea)+pa(1-Rn)
R,<r<R,+

By (2.1), po(1 + R,) — oo and p,(1 — R,) — 0 as n — oco. Hence
sup |[¢.(r)] =0 asn— oo.
Ry<r<B,1

Thus we get our assertion. O

COROLLARY 2.3. Let uj,us € M;}. Then the following conditions
are equivalent.

(1) S(p1) N S(p2) = 0.

(i) R{p1) N R(12) = 0.
(i) Ro(p1) N Ro(p2) = 0.

Proof. (i) = (ii) = (iii) are clear. To prove (iii) = (i), suppose that
S(p1) N S(ug) # 0. Take e® € S(uy) N S(p2). Then, by Theorem
2.3, there exist v € Ll (1) and o € L% (p») such that 4, (re®) — 0
and ¢,(re®) — 0 asr — 1,0 < r < 1. Thus both sets Ro(x) and
Ro(p2) contain {re#;0 < r < 1} \ {re®;0 < r < 1}. Hence we have
Ro(p1) N Ro(p2) # 0. O

COROLLARY 2.4. Let p € M}. If d§(S(u)) > 0, then there are no
nonzero f € H® such that Ro(u) C Z(f).

Proof. Suppose that d8(S(u)) > 0 and Ro(p) C Z(f) for some f €
H®. By Theorem 2.3, f(re®) — 0asr — 1,0 < r < 1, for every
e? € S(u). Since dO(S(y)) > 0, we have f = 0. a

3. Associated domains

In [12], the first author defined an associated domain of a Blaschke
product b with zeros {z,}, as follows; Q(b) = U{z € A; p(zn, 2) < |2a|},
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where p(zy, 2) = |2—2,|/|1—Zn2]. In this section, we define an associated
domain Q(u) of 4 € M}, and using this properties we study R(u).

Let © € M. Suppose that S(p) # OA. Then there is a sequence
(may be finite) of disjoint open subarcs {J;}i of OA such that

(3.1) oA\ S(p) = | Ji-
k=1

Put J; = {e?;s, < 6 < tx}. For each positive integer k, take two
sequences {8 }n and {txn}n such that sp < spn < sp1 <tey <ten <k,
Sgn — S and tx, — t asn — oo. Let {R,}, be a sequence of decreasing
numbers such that

(3.2) —-1<R,<0 and limR,=-1.
Put
(33) O = | J{Ar.(¢7);¢” € S(W)}-

Then 2, is a simply connected domain, , C 2,1, and 9Q, N OA =
S(p). By (3.2) and (3.3), U2, = A. For each pair of integers k and
n such that 1 < k <n, let

(3.4) Ein={2€A;sp, <argz <tpn, 2z ¢ U}

Then Ej, is a closed subset of A, and for each fixed k, the sequence
{Exn}n converges to J as n — o0o. Let

- oo 00 £

k=1n=k
Then E is a closed subset of A. Let
(3.6) Q(p) =A\E.

When S(u) = A, we put Q(u) = A. By our construction, Q(u) is a
simply connected domain and

(3.7) 8Q(p) NAA = S(u).

We call (1) the associated domain of p. Since there are infinitely many
choices of sequences {Ej n}kn, Q(x) is not determined uniquely. In any
way, for each p we assign Q(u) one of such domains.

The following theorem is the singular inner function’s version of {12,
Theorem 4.4].
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THEOREM 3.1. Let p € M;}. Then R(u) C Q(u).
To prove Theorem 3.1, we need the following lemma.

LEMMA 3.1. Let p € M and 2y € A,z # 0. Let €™ € S(u) be the
nearest point from 2. Then |v,(z)| > |1/;5€ﬂ0(z0)|||/‘||,

Proof. By simple calculation, we have

[u(z0)] = exp (— /. PZO(ei”>du<ei9>)

> oxp (Nl [ Pa(e)ds )
oA
= ]1/,58“0 (ZO)IIIuII. O

Proof of Theorem 3.1. When S(u) = A, Q(u) = A = M, so that
we may assume that S(u) # OA. To describe Q(), we use (3.1) - (3.7).

To prove our assertion, suppose not. Then there exist v € L} (1) and
a sequence {z;}; in A\ Q(y) such that |z;| — 1 and

(3.8) limsup [, (2;)| < 1.

j—oo
For each j, by (3.5) and (3.6), z; € Ej,; for some k; < n;. Then by
(3.4), 2; & Qn;. Hence by (3.3), 2; ¢ Ag, (€”) for every e € S(u). By
Lemma 2.3, '

1-Rp.
s (25)] 2 e 7 for every € € S(p).

Since S(v) C S(u), by Lemma 3.1 we have

1+-Rp .
(3.9) |vu(2;)] = e T for every j.

By considering a subsequence of {z;};, we may assume that n; — oo as
Jj — oo or n; = ng for every j. When n; — oo as j — oo, by (3.2) and
(3.9) we have |¢,(z;)] — 1. This contradicts (3.8). When n; = nq for
every j, we have 1 < k; < ng for every j. Hence we may assume that
k; = ko for every j. Then z; € Ej, ,, for every j. Since |2;| — 1, by (3.4)
we have cl{z;}; \ {z;}; C Ji,- Since S(v) C S(p), S(v)NJy, = 0. Hence
l¥,(2;)] — 1 as j — oo. This also contradicts (3.8). O
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By (3.7), Q(u) is a simply connected domain and 0Q(pu)NOA = S(u).
In [12], the first author proved that for a Blaschke product b, d(S(b)) =
0 if and only if there exists a Blaschke product B such that S(B) = S(b)
and Q(b)\ A c {|B| < 1}. In the same way as the proof of [12, Theorem
4.6) and using Theorem 3.1, we can prove the following theorem which

is the singular inner function’s version of Theorem B.

THEOREM 3.2. Let p € M. Then the following conditions are
equivalent.

(i) d6(S(u)) = 0.
(ii) There exists a Blaschke product b such that S(b) = S(u) and
R(p) C Z(b).
(iii) There exists a Blaschke product b such that S(b) = S(u) and
R(p) < {lb] < 1}.
(iv) There exists a Blaschke product b such that S(b) = S(u) and
H®[,;v € Ly ()] € H[b].

Here, we have a question for which p € M, there exists A € M
such that S(\) = S(x) and R(p) C {|¢a| < 1}. We note that R(5s0) =

{I1¥s | < 1}. Hence if S(u) is a finite set, then Ro(1) = Z(v,) G {|4l <
1} = R(u). Now we have the following theorem.

THEOREM 3.3. Let p € M. Then the following conditions are
equivalent.

(i) S(w) is a finite set.
() R(s) = {1l < 1).
(iii) There exists A\ € M such that S()\) = S(u) and R(p) C {|¢a] <
1}.
(iv) There exists A € M such that S(\) = S(u) and Re(u) C {|y] <
1}.
(v) There exists A € M such that S(A) = S(p) and Ro(p) C Z(¢).

Proof. (i) = (ii) and (i) = (v) are already mentioned.

(ii) = (iii) and (v) = (iv) are trivial.

(iv) = (ili) Suppose that there exists A € M such that S(A\) = S(u)
and Ro(u) C {|¢a] < 1}. To prove (iii), let € R(u). Then there exists
v € L1 () such that |¢, ()| < 1, so that by [1, p. 92] there exists y € M
such that supp u, C supp 4, and ¥,(y) = 0, where p, is the representing
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measure on M (L*®) for z, that is,
f@=[ fdu fr e
M(L>)

and supp y, is the closed support set of p,. Then y € Ry(y), so that by
our assumption we have |1,(y)| < 1. Since supp g, C supp g, we have
[¥a(z)] < 1. Thus we get (iii).

(iii) = (i) Let A € M such that

(3.10) S(A)=5(p) and R(u) C {lyal <1}.

By Frostman’s theorem (see [4]), there exists a Blaschke product B such
that S(B) = S(A) and {|B| < 1} = {|#»| < 1}. Then by (3.10),
R(p) c {|B| < 1}, so that by Theorem 3.2 we have df(S(u)) = 0. If
OA\ S(u) consists of finitely many disjoint open subarcs of A, S(u) is
a finite set.

So we shall show that A\ S(p) consists of finitely many disjoint open
subarcs. To prove this, suppose not. Then 0A \ S(u) = U2 ,J,, where
J,, is an open subarc of A, say J, = {e?;s, < 6 < t,}, such that

(3.11) J.NS(u)=0 and e* e € S(p).
For the sake of simplicity, we assume that

O<spp1 <t <s,<t, and lim ¢t,=0.

00

Put
(3.12) )\n = )\l{ew}tn-e-lfefsn}'
Then by (3.10) and (3.11), we have || A,]| # 0. We also have "7, || A,]| <

|All < oo. Hence there exists a sequence of positive numbers {p,}, such
that

(3.13) an“)‘n” <oo and p,— 00 asm — 00.
n=1
Here we can take —1 < R, < 1 such that
1+ R, 1
3.14 Al = —.
(314 Il = -

Put A, = X — \,. Then by (3.12) we have e*» ¢ S(X,), so that for each
fixed n, we have |y (2)] — 1 as z — €*», 2 € A. Hence there exists a
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sequence {z,}, such that

(3.15) zn € OAR,(€""), s, < argz, < (s, +1t,)/2,
and

(3.16) [, (2n)] — 1.

By (3.15) and Lemma 2.3, we have

(3.17) (50, (20)] = €755

Hence

9 (an)] = W, (2l () _;
> |¢6eisn(Zn)lu’\"”h/),\;(zn)| by (3.15) and Lemma 3.1
= e FRMlyy (z)] by (3.17)
=emly(z) by (3.14).
Thus by (3.13) and (3.16),
(3.18) [¥a(z,)] = 1 asn— oo.

For each ¢ < sy, let pine = pyenecpesy. By (3.11), [|ttnell # 0. Then
Bne/|ltncll — Ocien as ¢ — s, in the weak*-topology of M (0A), so that
there exists ¢, < s, such that

(3.19) (Wi (20)] < [, ()2,

where Hn = ,Un,cn/ ”/‘Ln,cn”' Let

(3.20) v= an”)\n”ﬂn-
n=1

Then by (3.13), {lv|] <3 pallAn]l < co. Hence v € L} (u) and
[u(zn)] < [, (2a) [P0 by (3.20)
< (W0, (2a) 1172 by (3.19)
=Bl sy
=e 2 by (3.14).

Therefore {zn}n \ {2n}n C {|¥] < 1} C R(1). On the other hand, by

(3.18) we have {z,}, \ {za}n C {|a| = 1}. Thus R(u) ¢ {|[v»] < 1}.
This contradicts (3.10). ]
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COROLLARY 3.1. Let p € M}. Then there are no measures A € M}
such that S(A) = S(u) and R(p) C Z(1y).

Proof. Suppose that R(p) C Z(¢,) for some A € M} with S(A) =
S(u). By Theorem 3.3, S(]) is a finite set, so that R(up) = {|¢,] < 1} =
{Ial <1} 2 Z(t»). This is a contradiction. O

4. Zero sets of singular inner functions of L!-type

In Theorem 2.2, we proved that R(u) = Ro(u) for p € M, with
S(pn) = AA. In this section, we study measures p € M satisfying
R(p) = Ro(p). For ¢ € 9A, let M = {& € M; z(z) = (}, where z is
the coordinate function on A. First, we prove

PROPOSITION 4.1. Suppose that p 1 d;, where p € M} and ¢ € OA.
Then there exists v € LL (u) such that M N {|y,| < 1} C Z(v).

Proof. When ¢ ¢ S(u), then M¢N{|¢,| < 1} =0, so our assertion is
clear. Hence we assume that ( € S(u). Take a sequence of decreasing
open subarcs {J,}, of OA such that N3, J, = {¢}. Put p, = py,. Then
ll2n]l # 0. Since p L &, ||n]} — 0 as n — 0o. Moreover we may assume
that > o7, ||#n|l < 0o. Then there exists a sequence of positive numbers
{pn}n such that > >0 p,|lp.]l < co and p, — 00 as n — oco. We put
Vv =Y ol Pafln. Since gy, € Li(p) and |[v)| < 3507, pallpall < oo, we
have v € L% (u). We note that |¢,,| = |4,| on M. Then we have
Y| < [¢u. P = |¥u[P» on M. Since p, — 0o as n — oo, we obtain our
assertion. g

PROPOSITION 4.2. Let € M,. Then R(1) = Ro(n)-
Proof. It is trivial that
(4.1) Ro(w) € R(p) [ J{Mc: ¢ € S(w)}-

To prove our assertion, let v € L1 (x) and ¢ € S(p). By Proposition 4.1,
there exists o € L} (v) such that

(4'2) MC n {Wjul < 1} - Z(¢o)'

Since o € L (v) C L% (p), by (4.2) we have M, N {|ih,| < 1} C Ro(u)-
Thus we get M, NR(p) C Ro(p) for ( € S(p). Hence by (4.1), R(n) C
Ro(w)- O
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Next, we study p € M satisfying R(u) = Ro(u).

THEOREM 4.1. Let p € M and p = p, + pg, where p, € M, and
ta € M), Let pg = > 7 an00, where a, > 0 for every n. Then the
fol]owmg assertions are equivalent.

(i) R(p) = Ro(w)-

(ii) For every m, there exists v, € L. (u) such that {IWs6,1 < 1} C

Z(wyn)‘
(i) For every n, there exists A, € M; such that S()\,) ¢ S(u) and

{1¥s,0,1 <1} C Z(1hn,).
To prove our theorem, we need some lemmas.

LEMMA 4.1. Let p =3 a,8.0, € M .4» Where a, > 0 for every n.
Then

R(1) = Ro(p) U [ J{Is,, | < 1}.
Proof. We know

Ro(p) U | {Ws,,] < 1} € R().

n=1
To prove our assertion, suppose that R(1) # Ro(p). Let z € R(u) \
Ro(u). Then there exists v € L! (u) such that

(43) 0< [p(a)] < 1.

It is sufficient to prove that |¢)s,, ()| < 1 for some n. To prove this,
suppose not. Then

(4.4) 5,4, (z)] =1 for every n.

Let v = 377 byd.u., Where b, > 0 for every n. By (4.3) and (4.4),
b, > 0 for infinitely many n. Without loss of generality, we may assume
that b, > 0 for every n. Since 2 b, < oo, there exists a sequence
of increasing positive numbers {pn}n such that 3 >° p,b, < oo and
Pn—00asn—o00. Put 0 =3 p,b,00.. Then o € Ll (). For each

positive integer k, put
o0
Vp = Z bnéeion.
=k

Then ¢ > pyu; for every k. Hence i)y (4.4),
[0 (2)] < [y, (2) P = [3, ()P



802 Keiji Izuchi and Norio Niwa

Since p; — 0o as k — 00, by (4.3) we have z € Z(1),). Hence x € Ro(p),
this is a contradiction. O
LEMMA 4.2. Let p € M;} and e® € OA such that {|¢)s,| < 1} C
Z(’d}ﬂ) Put py = p — /L({elg})(sew' Then {|¢5eio| < 1} - Z(¢U1)
Proof. For 0 <r < 1, let
b(z) — 1/)581'0 (Z) =T ,
1- ’f"l/)aew(z)

Then b is an interpolating Blaschke product, see [6]. Let {w,}, be the
zeros of b. Then ¢, (w,) = r for every n. By our assumption, we have

Yu, = 0 on {wy}n \ {wn}n = Z(b). Hence by Lemma 2.2, {|b| < 1} C
Z (). Since {|b] < 1} = {|¢s,,| < 1}, we get our assertion. O

z € A.

LEMMA 4.3. Let p € M}, -1 <R < 1, and J = {€¥;0, < 0 < 61}.
Suppose that J N S(u) = 0. If p L 8,s, then ¢, (2)| — 1 as |2| — 1,
z € OAR(e?™) and 0y < argz < 6.

Proof. We may assume that e = 1. It is not difficult to see that
our assertion holds when 1 = e ¢ S(u). So we assume 1 € S(u). Let
J, = {€%;—1/n < 6 < 0}. Since 1 € S(p), JNS(p) =0, and p L 41,
we have ||, || # 0. Put p, = pys, and p;, = ppa\s,- Then |[pn[| — 0 as
n — oo and p = u, + u,, for every n.

To prove our assertion, let € > 0 arbitrary. Then there exists a
positive integer k such that

(4.5) e TRl 5 1 g

Since 1 ¢ S(ut), |9y (2)] — 1 as 2| — 1,2 € OAg(1). Hence there
exists 19,0 < 1o < 61/2, such that

(4.6) [y (2)] > 1 —€ for 2 € DAg(1),0 < argz <.
For every z € OAg(1) with 0 < argz < ry, we have
[Yu(2)] = [P (2) 14, (2)]
> |5, (2) "y ()] by Lemma 3.1
= e'%g“”""h/)%(zﬂ by Lemma 2.3
>(1—¢€)? by (4.5) and (4.6).

This shows our assertion. O
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Proof of Theorem 4.1. (i) = (ii) It is sufficient to prove (ii) forn = 1.
For 0 <r <1, let
e (2) -
T 1- 5 40, (2)’
Then by [6] b is an interpolating Blaschke product and
(4.7) Vs =T on Z(b).

Since {|v5, | < 1} C R(u), Z(b) C R(k). By condition (i), for each
T € Z(b)ethere exists o, € L!(u) such that ¢, (z) = 0. By (4.7),
we may assume that dq L o,. Since Z(b) is compact, there exist
01,--- ,0k € L} (u) such that Z(b) C Us_{|¢,| < 1} and 8,0, L o; for
every j. Put A = Z?=1 oj. Then A € Ll (), 6,44 L A, and

(4.8) Z(b) C {ltal < 1}.
By Proposition 4.1, there exists v € L. (A) such that M e, N {|4hn] <
1} C Z(%,). Since A € L% (u), v € L (p). Since Z(b) C M_q,, by (4.8)
we have Z(b) C Z(v,). Hence by Lemma 2.2, {|b| < 1} C Z(+,). Since
{16l <1} = {|#s,, | < 1}, condition (ii) holds.

(ii) = (i) It is easy to see that R(u) = R(p) U R(ug) and Ro(p) =
Ro(pe) U Ro(pq)- Hence '

R(p) = Ro(pte) UR(1g) by Proposition 4.2

b(2) z€A.

n=1

C Ro(p) by condition (ii).

Thus we get condition (i).

(ii) = (iii) is trivial.

(iii) = (ii) It is sufficient to prove for the case n = 1. We may
assume that e = 1. Let

I, =00(1)N{Imz >0} and T_ =0A(1)N{Imz < 0}.
We shall show the existence of 7,7/ € L! (1) such that
(4.9) ¥ (2) >0 asl|z|—1,2€el,
and
(4.10) Y(2) >0 as|z| - 1,zel_.

= Ro(pe) U ('Ro(ud) U {UJ{Is,, | < 1}> by Lemma 4.1
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We prove only (4.9). In the same way, we can prove (4.8). By condition
(iii), there exists A € M such that

(4.11) {le| <1} C Z(¢hr) and S(A) C S(n).

By Lemma 4.2, we may assume that A L &;. Since |¢5,(z)| — e7! as
lz| = 1,z € T'y, by (4.11) we have

(4.12) a(z) =0 asl|z|—1,z€eTl,.
Then by Lemma 4.3, we may further assume that
SN cJ={e%0<80<r} forsome 0<r <1

and A({e?;0 < 0 < e}) > O for every 0 < ¢ < 71. Then we can take
a sequence of decreasing numbers {r,},,7, > 0, such that A({e"}) =
p({e"}) = 0 and A(J,) # O for every n, where J, = {9 rpy <0 <r}.
Put

(4.13) An = g,

Then we have
o0 xX

(4.14) A=A, A= Z [Anll, and |[As]l #O.
n=1 n=1

Let £(t),0 < t < 1, be a one to one continuous map onto I'y such
that £(t) — 1 as t — 0. Then by (4.12),

(4.15) ¥A(&(t)) = 0 ast— 0.
Since 1 ¢ S(\), we also have
(4.16) Y- (&(t)) =0 ast—0.

Let {&, }» be a sequence of positive numbers such that ¢, — 0 asn — oo.
By (4.15), there exists ¢;, 0 < ¢; < 1, such that

(4.17) [r(€(t))| <e1 for0<t <.

By (4.11) and (4.13), we have S(A;) C S(,,)- Then it is not difficult
to see the existence of a sequence {4} in L. (p4,) such that [|p 4] <
|All and g1 — A; in the weak*-topology of M(OA). We note that
|, ] — || uniformly on compact subsets of A. Put p; = py for
sufficiently large k, and then put

(418) T = 1+ Z )\j.
j=2
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By (4.14), (4.16), and (4.17), we may assume moreover that |-, (£(t))] <
gy for 0 < t < ¢;. Since 1 ¢ S(A) U S(m), [¥n(§(t))] — 1 and
I, (E())] — 1 ast — 0. Hence by (4.16), ¢, (£(t)) — 0 ast — 0.
Then take c; such that 0 < ¢; < ¢; and [¢, (£(t))| < ez for 0 < t < cp.

In the same way, there exists ps € L! (p,4,) such that ||us| < || Aef and
1, (E())] < &) for 0 <t < gk =1,2,3, where 75 = 1+ pa + 2525 A;e
We note that 1,,(£(t)) — 0 as t — 0. Repeat this process. Then we get
sequences of measures {i,}, and {7,},, and a sequence of decreasing
numbers {c,}, such that

(4.19) ¢n— 0 asn— oo,
(4.20) pa € Ly (1),
(4.21) llall < 1Al
(4.22) = it Y, N

=1 j=n+1
and
(4.23) [ (E(t)| <er forO0<t<c, k=1,2,...,n+1
Let
(4.24) =Y

j=1

Then by (4.14), (4.20) and (4.21), ||7|| < oo and 7 € L (x). Also by
(4.22) and (4.24), |7 —7,|| — 0 as n — oo. Hence by (4.23), |2, (£(2))] <
e, 0 < t < ¢, for every k. By (4.19), we get (4.9).

Now we prove the existence of v € Ll (1) such that

(4.25) {l¥s| <1} C Z(3n).
Let )
_ '1/)51 z) —e? 2
b(z) = 1= otd (2] T35 ()’ €A.

Then by [6], b is an interpolating Blaschke product with zeros {z,}, such
that 2z, € 0A¢(1) and z, — 1. Let

v=1+7 € L.(n).
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Then by (4.9) and (4.10), 9,(z,) — 0 as n — oo. Hence Z(b) C Z(v,)
and by Lemma 2.2, {|b| < 1} C Z(4,). Since {|b] < 1} = {|v5,| < 1},
we get (4.25).

O

The following follows from Theorem 4.1.

COROLLARY 4.1. Let p € M and p = p + g, where p, € M, and
ta € M. Suppose that R(u) = Ro(u). Then

(i) S(u) does not contain any isolated points.
(ii) If v € L' () and S(v) = S(u), then R(v) = Ro(v).
(iii) If A € M, and S(\) = S(p), then R(A + pg) = Ro(A + pq)-

We note that for p € M with S(u) # OA, there exists A € M}
such that S(\) = S(u) and R()) # Ro(). For, there is an open subarc
J = {€? 6y < 0 < 6,} such that J N S(u) = @ and € € S(u). Put
A =g+ d.40. Then S(A) = S(u). By Lemma 4.3, we have {|1/)55i00| <
1} & Ro(A). Hence by Theorem 4.1, R(A) # Ro(N)

From Theorem 4.1, we have the following problem.

PROBLEM 4.1. Characterize closed subsets E of A with 1 € E
satisfying the following condition; there exists 4 € M such that S(u) C

E and {ls| < 1} C Z(,).

5. Discrete measures

When p is a discrete measure, we have other equivalent conditions on
p such that R(u) = Ro(u).

THEOREM 5.1. Let p =3 o0 an640 € M:d, where a, > 0 for every
n. Then the following conditions are equivalent.
(i) R(n) = Ro(n)-
(ii) For every n, there exists v, € L} (u) such that {|¢s,, | < 1} C
Z('(l/',/")-
(iii) For every n, there exists A\, € M such that S(\,) C S(p) and
{150, 1 <1} C Z(¥n,)-
(iv) There exists v € L () such that {|¢,| < 1} C Z(¢,).
(v) There exists A € M such that S(A\) = S(p) and {|¢,| < 1} C
Z(¥»)-
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Proof. (i) < (ii) < (iii) follow from Theorem 4.1.

(iv) = (v) = (iii) are trivial.

(ii) = (iv) By condition (i), there exists v, € L} () such that
(5.1) {1s,0,1 <1} C Z(y,,) for every n.

Since Z(¢,,) = Z(¥e,) for ¢ > 0, we may assume that S oor i vall < oo
Let

(5.2) A= i V.

n=1

Then A € L! (), so that we can write A as

o0 o0
(5.3) A= anéeion and z |bs] < 00.
n=1 n=1

Hence there exists a sequence of increasing positive integers {p,}, such
that

(5.4) an(an +b,) <oo and p, — 00 asn— .
n=1
Let
(5.5) v= an(an + by )d¢itn -
n=1

Then by (5.4), v € L. (u). To prove condition (iv), let z € M\ A such
that

(5.6) [Yu(z)| < 1.
We shall prove that
(5.7) z € Z(Yy).

By (5.2), (5.3), and (5.5), we have v > 3% | v > v, s0 that [, < ¥,
on M\ A for every n. If |¢)s, (z)| < 1 for some n, then by (5.1) we
obtain (5.7).

Next, suppose that
(5.8) |95,4, ()] =1 for every n.

Put

o0

(o0}
v, = ij (aj +b;)040; and p, = Z ;6 ;.
j=n

j=n
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Then v, > p, 3 %2, a;0,0, = pyul,. Hence
(5.9) [y | < (b [P for every n.
Therefore

n—1
[(z)| = [ (2))] H ,‘/’éem,- () [Pias+bs)
=1

=[Yu(z)l by (5.8)
< [, (@) by (5.9)
= [bu(z)P" by (5.8).
Since p, — 00, by (5.6) we have 9,(z) = 0. Thus we get (5.7). o

We show the existence of positive discrete measures which satisfy
conditions in Theorem 5.1.

EXAMPLE 5.1. Let {¢*}, be a dense subset of A and {a,}, a se-

quence of positive numbers such that X2 a, < co. Let = S o Qnbeitn.
Then S(u) = 0A. By Theorem 2.1, R(,u) Ro(p).

EXAMPLE 5.2. By Gorkin [5], for every v € M} there exists A € M,
such that {|y,| < 1} C Z(¢,), where we can take A such as ||| is
sufficiently small. We use this fact inductively.

Let vy € M, with |lig|| < 1. Then there exists 14 € M, such that
{lw <1} C Z(¢,,1) and ||| < 1/2. Then there exists 15 e M/, such
that

{¥nl <1} € Z2(4h,) and || < (1/2)%

By induction, we can get a sequence {14}, in M, such that

(510) {|1/’uk_1| < 1} C Z(’l)buk)
and |l]l < (1/2)F. Let

0o
o= Z V.
k=0

Then p € M, and v, € L, (i) for every k. Suppose that u({e®}) > 0.

Then there exists a positive integer k such that v, ({e}) # 0. Then

{|1/15,9ol < 1} C {|#,| < 1}. Hence by (5.10), we have {|1/15 wl <1} C
Z(%y,_,). Therefore p satisfies condition (ii) of Theorem 5.1.
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Start from vy = 6;. Then by the above construction of u, we can
prove the existence of u € M s’* , satisfying conditions in Theorem 5.1 and

df(S(n)) = 0.

From Proposition 4.2 and Theorem 5.1, we have the following problem
on continuous measures.

PROBLEM 5.1. Let p € M. Does there exist v € L} (1) such that
{lul <1} C 2(4) 7

The following is a partial answer.

PROPOSITION 5.1. Let 1 € M",. Suppose that S(u) = {e;6, < 6 <
61},00 < 61. Then there exists v € L} () such that {|¢,| < 1} C Z(¥,).

Proof. When S(p) = 0A, by Theorem 2.1 we have our assertion. So
we assume that S(u) # 0A. Let J = {€?;6p < 6 < 6,} and =
{re?;0 < 7 < 1,6 < 6 < 6;}. As mentioned before, there exists an
interpolating Blaschke product b with zeros {2} such that z; # 0 for
every k and

(5.11) {ul < 13 = {18l < 1}.

Then

(5.12) d{zhs \{ze}e = J

and there exists a positive number ry such that

(5.13) |Yu(2c)] <o <1 for every k.

Put

(5.14) {Gln={zx; 2 € Q} and {&}n = {2520 € Qo}-

In the same way as the proof of Theorem 2.1, there exists 11 € L} (u)
such that

(5.15) ¥ () = 0 asn — oo.
Next, we prove the existence of v, € L} (1) such that
(5.16) Y,(§n) = 0 asn — oo.

Take a sequence of strictly increasing closed subarcs {J,,},, of J such that
(U2, J,) = J. Let Jy = 0. Put I, = J, \ Jo—y and p, = yy7,. Then
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”_/‘n” >0,
(5.17) L= fin,
n=1

and there exists a sequence of increasing positive numbers {p,}, such
that

(5.18) Z Pullttn]] <0 and p, — 0o asn — co.
n=1
Let
[o¢}
(5.19) Vo= Paftn.
n=1

Then v, € Li(p). By (5.12) and (5.14), cl{&.}n \ {&}n C {e®, €},
Hence we have

(5.20) Y (6)] = 1 asn — oo for every k.

By (5.18) and (5.19), we have vy > pr 5°°° u,. Hence by (5.17) and
n=k

(5.20), |th,| < [4hul™ on {&:}n \ {€:}n- By (5.13), |tbul < 7o on {&}n \
{én}n. Therefore by (5.18), 4., = 0 on {£,}.\ {&:}n. Thus we get (5.16).

Put v = vy + vp. Then v € L} (p), and by (5.14), (5.15), and (5.16)
we have that +,(2z,) — 0 as n — c0. Hence by Lemma 2.2, {|b| < 1} C
Z(1,). Thus by (5.11), we have our assertion. O
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