DOI QR코드

DOI QR Code

THE IDEAL CLASS GROUP OF POLYNOMIAL OVERRINGS OF THE RING OF INTEGERS

  • Chang, Gyu Whan (Department of Mathematics Education Incheon National University)
  • Received : 2021.07.06
  • Accepted : 2022.03.03
  • Published : 2022.05.01

Abstract

Let D be an integral domain with quotient field K, Pic(D) be the ideal class group of D, and X be an indeterminate. A polynomial overring of D means a subring of K[X] containing D[X]. In this paper, we study almost Dedekind domains which are polynomial overrings of a principal ideal domain D, defined by the intersection of K[X] and rank-one discrete valuation rings with quotient field K(X), and their ideal class groups. Next, let ℤ be the ring of integers, ℚ be the field of rational numbers, and 𝔊f be the set of finitely generated abelian groups (up to isomorphism). As an application, among other things, we show that there exists an overring R of ℤ[X] such that (i) R is a Bezout domain, (ii) R∩ℚ[X] is an almost Dedekind domain, (iii) Pic(R∩ℚ[X]) = $\oplus_{G{\in}G_{f}}$ G, (iv) for each G ∈ 𝔊f, there is a multiplicative subset S of ℤ such that RS ∩ ℚ[X] is a Dedekind domain with Pic(RS ∩ ℚ[X]) = G, and (v) every invertible integral ideal I of R ∩ ℚ[X] can be written uniquely as I = XnQe11···Qekk for some integer n ≥ 0, maximal ideals Qi of R∩ℚ[X], and integers ei ≠ 0. We also completely characterize the almost Dedekind polynomial overrings of ℤ containing Int(ℤ).

Keywords

Acknowledgement

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B06029867).

References

  1. D. F. Anderson, The class group and local class group of an integral domain, in Non-Noetherian commutative ring theory, 33-55, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000.
  2. D. F. Anderson and G. W. Chang, The class group of integral domains, J. Algebra 264 (2003), no. 2, 535-552. https://doi.org/10.1016/S0021-8693(03)00139-X
  3. N. Bourbaki, Commutative Algebra. Chapters 1-7, translated from the French, reprint of the 1972 edition, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1989.
  4. A. Bouvier, Le groupe des classes d'un anneau integre, 107 eme Congres des Societes Savantes, Brest fasc. IV (1982), 85-92.
  5. P.-J. Cahen and J.-L. Chabert, Integer-valued polynomials, Mathematical Surveys and Monographs, 48, American Mathematical Society, Providence, RI, 1997. https://doi.org/10.1090/surv/048
  6. J.-L. Chabert and G. Peruginelli, Polynomial overrings of Int(ℤ), J. Commut. Algebra 8 (2016), no. 1, 1-28. https://doi.org/10.1216/JCA-2016-8-1-1
  7. G. W. Chang, Every abelian group is the class group of a ring of Krull type, J. Korean Math. Soc. 58 (2021), no. 1, 149-171. https://doi.org/10.4134/JKMS.j200010
  8. L. Claborn, Every abelian group is a class group, Pacific J. Math. 18 (1966), 219-222. http://projecteuclid.org/euclid.pjm/1102994263 https://doi.org/10.2140/pjm.1966.18.219
  9. P. Eakin and W. Heinzer, More noneuclidian PID's and Dedekind domains with prescribed class group, Proc. Amer. Math. Soc. 40 (1973), 66-68. https://doi.org/10.2307/2038634
  10. S. El Baghdadi, L. Izelgue, and S. Kabbaj, On the class group of a graded domain, J. Pure Appl. Algebra 171 (2002), no. 2-3, 171-184. https://doi.org/10.1016/S0022-4049(01)00146-3
  11. D. Estes and J. Ohm, Stable range in commutative rings, J. Algebra 7 (1967), 343-362. https://doi.org/10.1016/0021-8693(67)90075-0
  12. M. Fontana and S. Gabelli, On the class group and the local class group of a pullback, J. Algebra 181 (1996), no. 3, 803-835. https://doi.org/10.1006/jabr.1996.0147
  13. R. M. Fossum, The Divisor Class Group of a Krull Domain, Springer-Verlag, New York, 1973.
  14. S. Gabelli and F. Tartarone, On the class group of integer-valued polynomial rings over Krull domains, J. Pure Appl. Algebra 149 (2000), no. 1, 47-67. https://doi.org/10.1016/S0022-4049(98)00159-5
  15. R. Gilmer, An embedding theorem for HCF-rings, Proc. Cambridge Philos. Soc. 68 (1970), 583-587. https://doi.org/10.1017/s0305004100076568
  16. R. Gilmer, Multiplicative Ideal Theory, Pure and Applied Mathematics, No. 12, Marcel Dekker, Inc., New York, 1972.
  17. R. Gilmer, W. Heinzer, D. Lantz, and W. Smith, The ring of integer-valued polynomials of a Dedekind domain, Proc. Amer. Math. Soc. 108 (1990), no. 3, 673-681. https://doi.org/10.2307/2047787
  18. M. Griffin, Some results on v-multiplication rings, Canadian J. Math. 19 (1967), 710-722. https://doi.org/10.4153/CJM-1967-065-8
  19. W. Heinzer, On Krull overrings of a Noetherian domain, Proc. Amer. Math. Soc. 22 (1969), 217-222. https://doi.org/10.2307/2036956
  20. S. Kabbaj and A. Mimouni, t-class semigroups of integral domains, J. Reine Angew. Math. 612 (2007), 213-229. https://doi.org/10.1515/CRELLE.2007.088
  21. B. G. Kang, Prufer v-multiplication domains and the ring R[X]Nv, J. Algebra 123 (1989), no. 1, 151-170. https://doi.org/10.1016/0021-8693(89)90040-9
  22. B. G. Kang, On the converse of a well-known fact about Krull domains, J. Algebra 124 (1989), no. 2, 284-299. https://doi.org/10.1016/0021-8693(89)90131-2
  23. C. R. Leedham-Green, The class group of Dedekind domains, Trans. Amer. Math. Soc. 163 (1972), 493-500. https://doi.org/10.2307/1995734
  24. K. A. Loper and T. G. Lucas, Factoring ideals in almost Dedekind domains, J. Reine Angew. Math. 565 (2003), 61-78. https://doi.org/10.1515/crll.2003.105
  25. K. A. Loper and F. Tartarone, A classification of the integrally closed rings of polynomials containing ℤ[X], J. Commut. Algebra 1 (2009), no. 1, 91-157. https://doi.org/10.1216/JCA-2009-1-1-91
  26. K. A. Loper and N. J. Werner, Generalized rings of integer-valued polynomials, J. Number Theory 132 (2012), no. 11, 2481-2490. https://doi.org/10.1016/j.jnt.2012.05.009
  27. M. Nagata, Local Rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York, 1962.
  28. P. Samuel, Lectures on Unique Factorization Domains, Tata Institute of Fundamental Research Lectures on Mathematics, No. 30, Tata Institute of Fundamental Research, Bombay, 1964.
  29. P. Samuel, About Euclidean rings, J. Algebra 19 (1971), 282-301. https://doi.org/10.1016/0021-8693(71)90110-4
  30. M. Zafrullah, Putting t-invertibility to use, in Non-Noetherian commutative ring theory, 429-457, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000.