• Title/Summary/Keyword: local Lipschitz condition

Search Result 17, Processing Time 0.023 seconds

THE CONVERGENCE BALL OF INEXACT NEWTON-LIKE METHOD IN BANACH SPACE UNDER WEAK LIPSHITZ CONDITION

  • Argyros, Ioannis K.;George, Santhosh
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • We present a local convergence analysis for inexact Newton-like method in a Banach space under weaker Lipschitz condition. The convergence ball is enlarged and the estimates on the error distances are more precise under the same computational cost as in earlier studies such as [6, 7, 11, 18]. Some special cases are considered and applications for solving nonlinear systems using the Newton-arithmetic mean method are improved with the new convergence technique.

WEAK SUFFICIENT CONVERGENCE CONDITIONS AND APPLICATIONS FOR NEWTON METHODS

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.1-17
    • /
    • 2004
  • The famous Newton-Kantorovich hypothesis has been used for a long time as a sufficient condition for the convergence of Newton method to a solution of an equation in connection with the Lipschitz continuity of the Frechet-derivative of the operator involved. Using Lipschitz and center-Lipschitz conditions we show that the Newton-Kantorovich hypothesis is weakened. The error bounds obtained under our semilocal convergence result are finer and the information on the location of the solution more precise than the corresponding ones given by the dominating Newton-Kantorovich theorem, and under the same hypotheses/computational cost, since the evaluation of the Lipschitz also requires the evaluation of the center-Lipschitz constant. In the case of local convergence we obtain a larger convergence radius than before. This observation is important in computational mathematics and can be used in connection to projection methods and in the construction of optimum mesh independence refinement strategies.

LOCAL CONVERGENCE OF NEWTON'S METHOD FOR PERTURBED GENERALIZED EQUATIONS

  • Argyros Ioannis K.
    • The Pure and Applied Mathematics
    • /
    • v.13 no.4 s.34
    • /
    • pp.261-267
    • /
    • 2006
  • A local convergence analysis of Newton's method for perturbed generalized equations is provided in a Banach space setting. Using center Lipschitzian conditions which are actually needed instead of Lipschitzian hypotheses on the $Fr\'{e}chet$-derivative of the operator involved and more precise estimates under less computational cost we provide a finer convergence analysis of Newton's method than before [5]-[7].

  • PDF

LOCAL CONVERGENCE OF NEWTON-LIKE METHODS FOR GENERALIZED EQUATIONS

  • Argyros, Ioannis K.
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.425-431
    • /
    • 2009
  • We provide a local convergence analysis for Newton-like methods for the solution of generalized equations in a Banach space setting. Using some ideas of ours introduced in [2] for nonlinear equations we show that under weaker hypotheses and computational cost than in [7] a larger convergence radius and finer error bounds on the distances involved can be obtained.

LOCAL CONVERGENCE RESULTS FOR NEWTON'S METHOD

  • Argyros, Ioannis K.;Hilout, Said
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.267-275
    • /
    • 2012
  • We present new results for the local convergence of Newton's method to a unique solution of an equation in a Banach space setting. Under a flexible gamma-type condition [12], [13], we extend the applicability of Newton's method by enlarging the radius and decreasing the ratio of convergence. The results can compare favorably to other ones using Newton-Kantorovich and Lipschitz conditions [3]-[7], [9]-[13]. Numerical examples are also provided.

REAL-VARIABLE CHARACTERIZATIONS OF VARIABLE HARDY SPACES ON LIPSCHITZ DOMAINS OF ℝn

  • Liu, Xiong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.745-765
    • /
    • 2021
  • Let Ω be a proper open subset of ℝn and p(·) : Ω → (0, ∞) be a variable exponent function satisfying the globally log-Hölder continuous condition. In this article, the author introduces the "geometrical" variable Hardy spaces Hp(·)r (Ω) and Hp(·)z (Ω) on Ω, and then obtains the grand maximal function characterizations of Hp(·)r (Ω) and Hp(·)z (Ω) when Ω is a strongly Lipschitz domain of ℝn. Moreover, the author further introduces the "geometrical" variable local Hardy spaces hp(·)r (Ω), and then establishes the atomic characterization of hp(·)r (Ω) when Ω is a bounded Lipschitz domain of ℝn.

Approximate Controllability for Semilinear Neutral Differential Systems in Hilbert Spaces

  • Jeong, Jin-Mun;Park, Ah-Ran;Son, Sang-Jin
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.3
    • /
    • pp.559-581
    • /
    • 2021
  • In this paper, we establish the existence of solutions and the approximate controllability for the semilinear neutral differential control system under natural assumptions such as the local Lipschitz continuity of nonlinear term. First, we deal with the regularity of solutions of the neutral control system using fractional powers of operators. We also consider the approximate controllability for the semilinear neutral control equation, with a control part in place of a forcing term, using conditions for the range of the controller without the inequality condition as in previous results.

EXTENDING THE APPLICABILITY OF INEXACT GAUSS-NEWTON METHOD FOR SOLVING UNDERDETERMINED NONLINEAR LEAST SQUARES PROBLEMS

  • Argyros, Ioannis Konstantinos;Silva, Gilson do Nascimento
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.311-327
    • /
    • 2019
  • The aim of this paper is to extend the applicability of Gauss-Newton method for solving underdetermined nonlinear least squares problems in cases not covered before. The novelty of the paper is the introduction of a restricted convergence domain. We find a more precise location where the Gauss-Newton iterates lie than in earlier studies. Consequently the Lipschitz constants are at least as small as the ones used before. This way and under the same computational cost, we extend the local as well the semilocal convergence of Gauss-Newton method. The new developmentes are obtained under the same computational cost as in earlier studies, since the new Lipschitz constants are special cases of the constants used before. Numerical examples further justify the theoretical results.

CONE VALUED LYAPUNOV TYPE STABILITY ANALYSIS OF NONLINEAR EQUATIONS

  • Chang, Sung-Kag;Oh, Young-Sun;An, Jeong-Hyang
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.5
    • /
    • pp.835-847
    • /
    • 2000
  • We investigate various ${\Phi}$(t)-stability of comparison differential equations and we obtain necessary and/or sufficient conditions for the asymptotic and uniform asymptotic stability of the differential equations x'=f(t, x).

  • PDF