DOI QR코드

DOI QR Code

THE CONVERGENCE BALL OF INEXACT NEWTON-LIKE METHOD IN BANACH SPACE UNDER WEAK LIPSHITZ CONDITION

  • Received : 2013.10.22
  • Accepted : 2014.10.10
  • Published : 2015.02.15

Abstract

We present a local convergence analysis for inexact Newton-like method in a Banach space under weaker Lipschitz condition. The convergence ball is enlarged and the estimates on the error distances are more precise under the same computational cost as in earlier studies such as [6, 7, 11, 18]. Some special cases are considered and applications for solving nonlinear systems using the Newton-arithmetic mean method are improved with the new convergence technique.

Keywords

References

  1. S. Amat, S. Busquier, and M. Negra, Adaptive approximation of nonlinear operators, Numer. Funct. Anal. Optim. 25 (2004), 397-405. https://doi.org/10.1081/NFA-200042628
  2. I. K. Argyros, Y. J. Cho, and S. Hilout Numerical methods for equations and its applications, CRC Press, Taylor and Francis, New York, 2012.
  3. I. K. Argyros and S. Hilout, Weak convergence conditions for inexact Newton-type methods, Appl. Math. Comput. 218 (2011), 2800-2809. https://doi.org/10.1016/j.amc.2011.08.023
  4. I. K. Argyros and S. Hilout, On the semilocal convergence of a Damped Newton's method, Appl. Math. Comput. 219 (2012), no. 5, 2808-2824. https://doi.org/10.1016/j.amc.2012.09.011
  5. I. K. Argyros and S. Hilout Weaker conditions for the convergence of Newton's method, J. complexity 28 (2012), 364-387. https://doi.org/10.1016/j.jco.2011.12.003
  6. J. Chen and W. Li, Convergence behaviour of inexact Newton methods under weaker Lipschitz condition, J. Comput. Appl. Math. 191 (2006), 143-164. https://doi.org/10.1016/j.cam.2005.03.076
  7. J. Chen and Q. Sun, The convergence ball of Newton-like methods in Banach space and applications, Taiwanese J. Math. 11 (2007), no. 2, 383-397. https://doi.org/10.11650/twjm/1500404696
  8. J. E. Dennis, On Newton-like methods, Numer. Math. 11 (1968), 324-330. https://doi.org/10.1007/BF02166685
  9. P. Deuflhard and G. Heindl, Affne invariant convergence theorem for Newton methods and extension to related methods, SIAM J. Numer. Anal. 16 (1979), 1-10. https://doi.org/10.1137/0716001
  10. J. A. Ezquerro, J. M. Gutierrez, M. A. Hernandez, N. Romero, and M. J. Rubio, The Newton method: From Newton to Kantorovich (SPANISH), GUC. R.Soc. Mat. Esp. 13 (2010), 53-76.
  11. E. Galligani, The Newton-arithmetic mean method for the solution of systems of nonlinear equations, Appl. Math. Comput. 134 (2003), 9-34. https://doi.org/10.1016/S0096-3003(01)00265-X
  12. L. V. Kantorovich and G. P. Akilov, Functional Analysis, 2nd ed., Pergamon Press, Oxford, 1982.
  13. J. M. Ortega and W. C. Rheinholdt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.
  14. P. D. Proinov, General local convergence theory for a class of iterative processes and its applications to Newton's method, J. Complexity 25 (2009), 38-62. https://doi.org/10.1016/j.jco.2008.05.006
  15. W. C. Rheinholdt, An adaptive continuation process for solving systems of nonlinear equations, Polish Academy of Science, Banach Ctr. Publ. 3 (1977), 129-142.
  16. J. F. Traub, Iterative methods for the solution of equations, Prentice-Hall Series in Automatic Computation, Englewood Cliffs, N. J., 1964.
  17. J. F. Traub and H. Wozniakowski, Convergence and complexity of Newton iteration, J. Assoc. Comput. Math. 29 (1979), 250-258.
  18. X. Wang, Convergence of Newton's method and uniqueness of the solution of equations in Banach space, IMA J. Numer. Anal. 20 (2000), 123-134. https://doi.org/10.1093/imanum/20.1.123
  19. T. J. Ypma, Affne invariant convergence results for Newton's method, BIT, 22 (1982), 108-118. https://doi.org/10.1007/BF01934400