DOI QR코드

DOI QR Code

LOCAL RESULTS FOR A CONTINUOUS ANALOG OF NEWTON'S METHOD

  • Argyros, Ioannis K. (CAMERON UNIVERSITY DEPARTMENT OF MATHEMATICS SCIENCES) ;
  • Hilout, Said (POITIERS UNIVERSITY LABORATOIRE DE MATHEMATIQUES ET APPLICATIONS)
  • Received : 2009.05.13
  • Accepted : 2010.04.12
  • Published : 2010.05.31

Abstract

A local convergence result is provided for the continuous analog of Newton's method in a Banach space setting. The radius of convergence is larger, the error bounds tighter, and under the same or weaker hypotheses than before [12].

Keywords

References

  1. R. G. Airapetyan, Continuous Newton method and its modication, Appl. Anal. 73(2000), 463-484.
  2. R. G. Airapetyan and A. G. Ramm, Dynamical systems and discrete methods for solvingnonlinear ill-posed problems, Appl. Math. Reviews 1, World Sci. Publishers, River Edge,NJ, 2000, 491-536.
  3. R. G. Airapetyan, A. G. Ramm and A. B. Smimova, Continuous analog of Gauss-Newton method, Math. Models Methods Appl. Sci. 9 (1999), 463-474. https://doi.org/10.1142/S0218202599000233
  4. R. G. Airapetyan, A. G. Ramm and A. B. Smimova,, Continuous method for solving nonlinear ill-posed problems, Amer. Math. Soc., Providence RI, Fields. Inst. Commun. 25 (2000), 111-137.
  5. I. K. Argyros, On the Newton-Kantorovich hypothesis for solving equations, J. Comput. Appl. Math. 169 (2004), 315-332. https://doi.org/10.1016/j.cam.2004.01.029
  6. I. K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl. 298 (2004), 374-397. https://doi.org/10.1016/j.jmaa.2004.04.008
  7. I. K. Argyros, Computational theory of iterative methods, Series: Studies in Computational Mathematics 15, Editors: C.K. Chui and L. Wuytack, Elsevier Publ. Co., New York, USA, 2007.
  8. R. Courant, Variational methods for the solution of problems of equilibrium and vibra- tions, Bull. Amer. Math. Soc. 49 (1943), 1-23.
  9. M. K. Gavurin, Nonlinear functional equations and continuous analogs of iterative meth- ods, Izv. Vuzov. Ser. Matematika 5 (1958), 18-31.
  10. B. Kaltenbacher, On Broyden's method for the regularization of nonlinear ill-posed problems, Numer. Funct. Anal. Optimiz. 19 (1998), 807-833. https://doi.org/10.1080/01630569808816860
  11. A. G. Ramm, Linear ill-posed problems and dynamical systems, J. Math. Anal. Appl. 258 (2001), 448-456. https://doi.org/10.1006/jmaa.2001.7365
  12. A. G. Ramm,, Acceleration of convergence of a continuous analog of the Newton method, Appl. Anal. 81 (2002), 1001-1004.
  13. A. G. Ramm,, Dynamical systems method for solving operator equations, Commun. Nonlinear. Sci. Numer. Simul. 9 (2004), 383-402. https://doi.org/10.1016/S1007-5704(03)00006-6
  14. A. G. Ramm and A. B. Smimova, Continuous regularized Gauss-Newton-type algorithm for nonlinear ill-posed equations with simultaneous updates of inverse derivative, Int. J. Pure. Appl. Math. 2 (2002), 23-34.
  15. A. G. Ramm, A. B. Smimova and A. Favini, Continuous modied Newton's-type method for nonlinear operator equations, Annali di Matematica 182 (2003), 37-52. https://doi.org/10.1007/s10231-002-0054-0