• Title/Summary/Keyword: differentiable

Search Result 195, Processing Time 0.026 seconds

OPTIMALITY CONDITIONS AND DUALITY RESULTS OF THE NONLINEAR PROGRAMMING PROBLEMS UNDER ρ-(p, r)-INVEXITY ON DIFFERENTIABLE MANIFOLDS

  • Jana, Shreyasi;Nahak, Chandal
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.491-502
    • /
    • 2014
  • In this paper, by using the notion of ${\rho}$-(p,r)-invexity assumptions on the functions involved, optimality conditions and duality results (Mond-Weir, Wolfe and mixed type) are established on differentiable manifolds. Counterexample is constructed to justify that our investigations are more general than the existing work available in the literature.

MIXED TYPE SECOND-ORDER DUALITY WITH SUPPORT FUNCTION

  • Husain, I.;Ahmed, A.;Masoodi, Mashoob
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1381-1395
    • /
    • 2009
  • Mixed type second order dual to the non-differentiable problem containing support functions is formulated and duality theorems are proved under generalized second order convexity conditions. It is pointed out that the mixed type duality results already reported in the literature are the special cases of our results.

  • PDF

CONVERGENCE THEOREMS ON VISCOSITY APPROXIMATION METHODS FOR FINITE NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Jung, Jong-Soo
    • The Pure and Applied Mathematics
    • /
    • v.16 no.1
    • /
    • pp.85-98
    • /
    • 2009
  • Strong convergence theorems on viscosity approximation methods for finite nonexpansive mappings are established in Banach spaces. The main theorem generalize the corresponding result of Kim and Xu [10] to the viscosity approximation method for finite nonexpansive mappings in a reflexive Banach space having a uniformly Gateaux differentiable norm. Our results also improve the corresponding results of [7, 8, 19, 20].

  • PDF

ON THE SOLUTION OF NONLINEAR EQUATIONS CONTAINING A NON-DIFFERENTIABLE TERM

  • Argyros, Ioannis K.
    • East Asian mathematical journal
    • /
    • v.24 no.3
    • /
    • pp.295-304
    • /
    • 2008
  • We approximate a locally unique solution of a nonlinear operator equation containing a non-differentiable operator in a Banach space setting using Newton's method. Sufficient conditions for the semilocal convergence of Newton's method in this case have been given by several authors using mainly increasing sequences [1]-[6]. Here, we use center as well as Lipschitz conditions and decreasing majorizing sequences to obtain new sufficient convergence conditions weaker than before in many interesting cases. Numerical examples where our results apply to solve equations but earlier ones cannot [2], [5], [6] are also provided in this study.

  • PDF

A RELATIONSHIP BETWEEN THE LIPSCHITZ CONSTANTS APPEARING IN TAYLOR'S FORMULA

  • Argyros, Ioannis K.;Ren, Hongmin
    • The Pure and Applied Mathematics
    • /
    • v.18 no.4
    • /
    • pp.345-351
    • /
    • 2011
  • Taylor's formula is a powerful tool in analysis. In this study, we assume that an operator is m-times Fr$\acute{e}$chet-differentiable and satisfies a Lipschitz condition. We then obtain some Taylor formulas using only the Lipschitz constants. Applications are also provided.

INEQUALITIES OF HERMITE-HADAMARD TYPE FOR n-TIMES DIFFERENTIABLE ARITHMETIC-HARMONICALLY FUNCTIONS

  • Kadakal, Huriye
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.244-258
    • /
    • 2022
  • In this work, by using an integral identity together with both the Hölder and the power-mean integral inequalities we establish several new inequalities for n-times differentiable arithmetic-harmonically-convex function. Then, using this inequalities, we obtain some new inequalities connected with means. In special cases, the results obtained coincide with the well-known results in the literature.

FRACTIONAL TRAPEZOID AND NEWTON TYPE INEQUALITIES FOR DIFFERENTIABLE S-CONVEX FUNCTIONS

  • Fatih Hezenci;Huseyin Budak;Muhammad Aamir Ali
    • Honam Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.160-183
    • /
    • 2023
  • In the present paper, we prove that our main inequality reduces to some trapezoid and Newton type inequalities for differentiable s-convex functions. These inequalities are established by using the well-known Riemann-Liouville fractional integrals. With the help of special cases of our main results, we also present some new and previously obtained trapezoid and Newton type inequalities.

PERTURBED FRACTIONAL NEWTON-TYPE INEQUALITIES BY TWICE DIFFERENTIABLE FUNCTIONS

  • Fatih Hezenci;Hasan Kara;Huseyin Budak
    • Honam Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.285-299
    • /
    • 2023
  • In the present paper, we establish some perturbed Newton-type inequalities in the case of twice differentiable convex functions. These inequalities are established by using the well-known Riemann-Liouville fractional integrals. With the aid of special cases of our main results, we also give some previously obtained Newton-type inequalities.

RIGHT-RADAU-TYPE INEQUALITIES FOR MULTIPLICATIVE DIFFERENTIABLE s-CONVEX FUNCTIONS

  • A. BERKANE;B. MEFTAH;A. LAKHDARI
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.4
    • /
    • pp.785-800
    • /
    • 2024
  • In this study, a new identity is introduced for multiplicative differentiable functions, forming the foundation for a range of 2-point right-Radau-type inequalities applicable to multiplicative s-convex functions. These established results are then showcased through applications that underscore their relevance within the domain of special means.