References
- P. Agarwal, M. Kadakal, I. Iscan, and Y.M. Chu, Better approaches for n-times differentiable convex functions, Mathematics 8 (2020), no. 6, 950. https://doi.org/10.3390/math8060950
- K. Bekar, Inequalities for there-times differentiable arithmetic-harmonically convex functions, TJANT 7 (2019), no. 3, 85-90. https://doi.org/10.12691/tjant-7-3-5
- S. S. Dragomir, Inequalities of Hermite-Hadamard type for AH-convex functions, Stud. Univ. Babes-Bolyai Math. 61 (2016), no. 4, 489-502.
- S.S. Dragomir, R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (1998), no. 5, 91-95. https://doi.org/10.1016/S0893-9659(98)00086-X
- S.S. Dragomir, S.S. and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
- I. Iscan, H. Kadakal, and M. Kadakal, Some new integralinequalities for n-times differentiable quasi-convex functions, Sigma Journal of Engineering and Natural Sciences 35 (2017), no. 3, 363-368.
- H. Kadakal, Hermite-Hadamard type inequalities for two times differentiable arithmetic-harmonically convex functions, Cumhuriyet Sci. J. 40 (2019), no. 3, 670-678. https://doi.org/10.17776/csj.544984
- H. Kadakal, New Inequalities for Strongly-Convex Functions, Journal of Function Spaces 2019 (2019), Article ID 1219237.
- H. Kadakal, (α, m1, m2)-convexity and some inequalities of Hermite-Hadamard type. Commun. Fac. Sci 68 (2019), no. 2, 2128-2142.
- H. Kadakal, Some integral inequalities for multiplicatively geometrically P-functions, IJOCTA 9 (2019), no. 2, 216-222.
- H. Kadakal, Ostrowski type inequalities for multiplicatively P-functions, Numer. Methods Partial Differ. Equations (2020), 1-10.
- M. Kadakal, Geometric trigonometrically convexity and better approximations, Numer. Methods Partial Differ. Equations 36 (2020), no. 6, 1830-1844. https://doi.org/10.1002/num.22506
- M. Kadakal, P. Agarwal, and I. Iscan, Some new inequalities for differentiable arithmetic-harmonically convex functions (2021), (Submitted to journal).
- M. Kadakal and I. Iscan, Exponential type convexity and some related inequalities, J. Inequal. Appl. 2020 (2020), no. 1, 1-9. https://doi.org/10.1186/s13660-019-2265-6
- H. Kadakal, M. Kadakal, and I. Iscan. Some new integral inequalities for n-times differentiable R-convex and R-concave functions, Miskolc Math. Notes 20 (2019), no. 2, 997-1011. https://doi.org/10.18514/mmn.2019.2489
- U.S. Kirmaci, M.K. Bakula, M.E. Ozdemir, and J. Pecaric, Hadamard-type inequalities fors-convex functions, Appl. Math. Comput. 193 (2007), no. 1, 26-35 https://doi.org/10.1016/j.amc.2007.03.030
- S. Maden, H. Kadakal, M. Kadakal, and I. Iscan, Some new integral inequalities for n-times differentiable convex and concave functions, J. Nonlinear Sci. Appl. 10 (2017), 6141-6148. https://doi.org/10.22436/jnsa.010.12.01
- D. S. Mitrinovic, J.E. Pecaric, and A.M. Fink, Classical and new inequalities in analysis, Kluwer Akademic Publishers, Dordrecht, Boston, London, 1993.
- S. Ozcan and I. Iscan. Some new Hermite-Hadamard type inequalities for s-convex functions and their applications, J. Inequal. Appl. 2019 (2019), no. 1, 1-11. https://doi.org/10.1186/s13660-019-1955-4
- S. Ozcan, Some integral inequalities for harmonically-convex functions, J. Funct. Spaces 2019 (2019), Article ID 2394021.
- M. Z. Sarikaya and N. Aktan, On the generalization of some integral inequalities and their applications, Math. Comput. Modell. 54 (2011), 2175-2182. https://doi.org/10.1016/j.mcm.2011.05.026
- T. Toplu, M. Kadakal, and Imdat Iscan, On n-polynomial convexity and some related inequalities, AIMS Math. 5 (2020), no. 2, 1304-1318. https://doi.org/10.3934/math.2020089