DOI QR코드

DOI QR Code

A NOTE ON *-CONFORMAL AND GRADIENT *-CONFORMAL η-RICCI SOLITONS IN α-COSYMPLECTIC MANIFOLDS

  • Haseeb, Abdul (Department of Mathematics, Faculty of Science, Jazan University) ;
  • Prasad, Rajendra (Department of Mathematics and Astronomy, University of Lucknow) ;
  • Chaubey, Sudhakar K. (Department of Mathematics, University of Technology and Applied Sciences) ;
  • Vanli, Aysel Turgut (Department of Mathematics, Gazi University)
  • Received : 2021.12.04
  • Accepted : 2022.02.24
  • Published : 2022.06.25

Abstract

In the present paper we study the properties of α-cosymplectic manifolds endowed with *-conformal η-Ricci solitons and gradient *-conformal η-Ricci solitons.

Keywords

Acknowledgement

The authors are thankful to the editor and anonymous referees for their valuable suggestions that definitely improved the paper.

References

  1. M. A. Akyol, Conformal anti-invariant submersions from cosymplectic manifolds, Hacettepe Journal of Mathematics and Statistics 46 (2017), 177-192.
  2. G. Ayar and S. K. Chaubey, M-projective curvature tensor over cosymplectic manifolds, Differential Geometry-Dynamical Systems 21 (2019), 23-33.
  3. A. M. Blaga, η-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl. 20 (2015), no. 1, 1-13.
  4. D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math., 509, Springer-Verlag, Berlin, 1976.
  5. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Second Edition, Progress in Mathematics, Vol. 203, Birkhauser Boston, Inc., Boston, MA, 2010.
  6. A. E. Fischer, An introduction to conformal Ricci flow, Class. Quantum Grav. 21 (2004), 171-218. https://doi.org/10.1088/0264-9381/21/3/011
  7. A. Ghosh and D. S. Patra, *-Ricci soliton within the frame-work of Sasakian and (K, µ)-contact manifold, Int. J. Geom. Methods in Mod. Phys. 15 (2018), 21 pages.
  8. S. I. Goldberg and K. Yano, Integrability of almost cosymplectic structure, Pacific J. Math. 31 (1969), 373-381. https://doi.org/10.2140/pjm.1969.31.373
  9. T. Hamada, Real hypersurfaces of complex space forms in terms of Ricci *-tensor, Tokyo J. Math. 25 (2002), 473-483. https://doi.org/10.3836/tjm/1244208866
  10. A. Haseeb, D. G. Prakasha, and H. Harish, *-Conformal η-Ricci solitons on α-cosymplectic manifolds, International Journal of Analysis and Applications 19 (2021), 165-179.
  11. A. Haseeb and R. Prasad, η-Ricci solitons on ⲉ-LP-Sasakian manifolds with a quarter symmetric metric connection, Honam Math. J. 41 (2019), 539-558. https://doi.org/10.5831/hmj.2019.41.3.539
  12. A. Haseeb and R. Prasad, *-Conformal η-Ricci solitons in ⲉ-Kenmotsu manifolds, Pub. De L'Inst. Math. 108(2020), no. 122, 91-102. https://doi.org/10.2298/pim2022091h
  13. G. Kaimakamis and K. Panagiotidou, *-Ricci solitons of real hypersurfaces in non-flat complex space forms, J. Geom. Phys. 86 (2014), 408-413. https://doi.org/10.1016/j.geomphys.2014.09.004
  14. T. W. Kim and H. K. Pak, Canonical foliations of certain classes of almost contact metric structures, Acta Math. Sinica, Eng. Ser. Aug. 21 (2005), 841-846. https://doi.org/10.1007/s10114-004-0520-2
  15. P. Majhi and D. De, *-Conformal Ricci solitons on a class of almost Kenmotsu manifolds, arXiv:2004.13405v1 [math.DG].
  16. P. Majhi, U. C. De, and Y. J. Suh *-Ricci solitons on Sasakian 3-manifolds, Publ. Math. Debrecen 93/1-2 (2018), 241-252.
  17. H. G. Nagaraja and K. Venu, f-Kenmotsu metric as conformal Ricci soliton, An. Univ. Vest. Timis. Ser. Mat.-Inform. 55 (2017), 119-127.
  18. Z. Olszak, Locally conformal almost cosymplectic manifolds, Colloq. Math. 57 (1989), 73-87. https://doi.org/10.4064/cm-57-1-73-87
  19. H. Ozturk, N. Aktan, and C. Murathan, Almost α-Cosymplectic (k, µ, ν)-Spaces, arXiv:1007.0527v1 [math.DG].
  20. H. Ozturk, C. Murathan, N. Aktan, and A. T. Vanli, Almost α-cosymplectic f-manifolds, Annals of the Alexandru Ioan Cuza University-Mathematics 60 (2014), no. 1, 211-226. https://doi.org/10.2478/aicu-2013-0030
  21. D. G. Prakasha and B. S. Hadimani, η-Ricci solitons on para-Sasakian manifolds, J. Geom. 108 (2017), 383-392. https://doi.org/10.1007/s00022-016-0345-z
  22. D. G. Prakasha and P. Veeresha, Para-Sasakian manifolds and *-Ricci solitons, Afrika Matematika 30 (2018), 989-998. https://doi.org/10.1007/s13370-019-00698-9
  23. J. P. Singh and C. Lalmalsawma, Ricci solitons in α-cosymplectic manifolds, Facta Universitatis, Ser. Math. Inform. 33 (2018), 375-387.
  24. S. Tachibana, On almost-analytic vectors in almost-Kahlerian manifolds, Tohoku Math. J. 11(1959), no. 2, 247-265. https://doi.org/10.2748/tmj/1178244584
  25. S. Tanno, Note on infinitesimal transformations over contact manifolds, Tohoku Math. J. 14 (1962), 416-430. https://doi.org/10.2748/tmj/1178244078
  26. M. Turan, C. Yetim, and S. K. Chaubey, On quasi-Sasakian 3-manifolds admitting η-Ricci solitons, Filomat 33 (2019), no. 15, 4923-4930. https://doi.org/10.2298/fil1915923t
  27. Venkatesha, D. M. Naik, and H. A. Kumara, *-Ricci solitons and gradient almost *-Ricci solitons on Kenmotsu manifolds, Mathematica Slovaca 69 (2019), no. 6, 1447-1458. https://doi.org/10.1515/ms-2017-0321
  28. Y. Wang, Ricci solitons on 3-dimensional cosymplectic manifolds, Mathematica Slovaca 67 (2017), no. 4, 979-984. https://doi.org/10.1515/ms-2017-0026
  29. S. K. Yadav, S. K. Chaubey, and S. K. Hui, On the Perfect Fluid Lorentzian Para-Sasakian Spacetimes, Bulg. J. Phys. 46 (2019), 1-15.
  30. K. Yano, Integral Formulas in Riemannian Geometry, Marcel Dekker, New York, 1970.
  31. G. Ayar and M. Yildirim, η-Ricci solitons on nearly Kenmotsu manifolds, Asian-European Journal of Mathematics 12 (2019), no. 6, 2040002. https://doi.org/10.1142/s1793557120400021
  32. M. Yildirim and G. Ayar, Ricci solitons and gradient Ricci solitons on nearly cosymplectic manifolds, Journal of Universal Mathematics 4 (2021), no. 2, 201-208.