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ABSTRACT. Mixed type second order dual to the non-differentiable problem
containing support functions is formulated and duality theorems are proved
under generalized second order convexity conditions. It is pointed out that
the mixed type duality results already reported in the literature are the
special cases of our results.
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1. Introduction

Many authors have studied duality for a class of nonlinear programming prob-
lems in which the objective function contains a differentiable convex function
along with either a positive homogenous function or the sum of positive homoge-
nous functions, e.g., Sinha [25], Zhang and Mond [27], Mond [9,12,13], Chandra
and Gulati [5] and Mond and Schechter [19,20]. These authors have introduced
the square root of positive semidefinite quadratic form (J:TBx)l/ 2 or a norm term
of the type || Pxt|| as a positive homogenous function. The popularity of this kind
of problem stems from the fact that, even though the objective function and/or
constraint functions are nondifferentiable, the dual problem comes out to be a
differentiable problem and hence is more amenable to handle from the computa-
tional point of view. Also as demonstrated by Sinha [25], these problems have
applications in the modelling of certain stochastic programming problem. While
most of these studies have considered only the Wolf type dual. Chandra, et al
[4] studied duality for such problems in the spirit of Mond and Weir [21] in order
to relax convexity conditions assumed in the fore cited references.
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Mangasarian [12] was the first to identify a second order dual formulation for
non-linear programs under the assumptions that are complicated and somewhat
difficult to verify. Mond [16] introduced the concept of second order convex
functions (named as bonvex functions by Bector and Chandra [2] studied second
order duality for nonlinear programs.

Mond and Schechter [20], studied symmetric duality for nondifferentiable prob-
lems containing support functions of certain compact convex sets instead of the
usual term of the type (27 Bz)'/? or ||Pz||. Further Husain, Abha and Jabeen
[7] studied the duality for nondifferentiable nonlinear programming problem in
which the objective as well as the constraint functions contains a term of a sup-
port function.Subsequently Husain and Jabeen [8] studied its fractional case.

Recently Husain et al [9] formulated Wolfe and Mond-Weir type second or-
der dual for nonlinear programming problem, whose objective and constraint
functions contain support functions. The purpose of this paper is to present a
mixed type second order dual to the non differentiable program which combines
Wolfe and Mond-Weir second order duals considered in Husain et al [9].It is also
pointed out that first order mixed type duality results proved in [9] are special
cases of our results.It is also indicated that the duality results studied by Zhang
and Mond [28] becomes special cases of our results if the support function is the
objective is replaced by square root of positive semi definite quadratic form and
the support functions that appear in the constraints are suppressed.

2. Notations and preliminaries

In this section we mention some notations to be used in the analysis of our
exposition and recourse some preliminaries for easy references.

Definitions. (i) Support function: Let C be compact convex set in R™. The
function S(z/C) given by S(z/C) = Max{zTz : 2z € C}, is called a support
function of C.

It may be noted that the support function S(z/C) is a non differentiable
convex function and has sub-differential given by 9S(z/C) = {z € C : 2Tz =
S(x/C)}.

(i%) Normal cone: For any set X C R", the normal cone to X at a point z € X
is defined by Nx(z) = {y:y7(» —2) <0, forall z ¢ X}

It can be easily seen that for a compact convex set C, y € Ne(z) iff S(y/C) =
2Ty, or equivalently z is sub differential of S(y/C).

(iit) Second order invex (Binver): Let f be a real valued twice differentiable
function defined on an open set X C R"™, then f is said to be second order invex,
if there exists a vector function n : R® X R™ — R™ such that for all z,u € X

£(@) — £(0) 2 o 2, 0]V () + V2 (w)p] — 50"V F(w)p,

(iv) Second order incave (Bincave): Let f be a real valued twice differentiable
function defined on an open set X C R™, then f is said to be second order invex,
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if there exists a vector function 7 : R" x R™ — R™ such that for all z,u € X

Fl&) = £(w) < o @, )]V ) + Vgl — 25"V flulp

(v) Second order pseudoinvex (Pseudobinvez): Let f be a real valued twice
differentiable function defined on an open set X C R™, then f is said to be
second order pseudoinvex, if there exists a vector function 1 : R x R* — R™
such that for all z,u € X

1" V) + V2] > 05 (2) 2 fu) — Lp" V2 fu)p

(vi) Second order pseudoincave ( Pseudobincave): Let f be a real valued twice
differentiable function defined on an open set X C R”, then f is said to be second
order pseudoincave, if there exists a vector function 5 : R™ x R™ — R"™ such that
forall z,u e X

0" (@ WV () + VEF()p] <0 f(a) < u) — 2p"V*f(ulp.

(vii) Second order quasi-inver ( Quasibinvez): Let f be a real valued twice
differentiable function defined on an open set X C R™, then f is said to be

second order quasi-invex, if there exists a vector function 5 : R™ x R* — R™ such
that for all z,u e X

$(@) 1) + 58"V Fulp < 0 =y (@, ) [V f(w) + V(] <.

(viti) Second order quasi-incave (Quasibincave): Let f be a real valued twice
differentiable function defined on an open set X C R", then f is said to be second
order quasi-incave, if there exists a vector function n: R® x R® — R" such that
forall z,ue X

£(&) = 1) + 50"V Fulp > 0 = " (@, 0)[V () + V(g > 0.

Let f : R* - Rand g; : R® — R (i = 1,2,...,m) be subdifferentiable
Lipchitz functions. Let C be a compact convex set in R™. Then consider the
following nonlinear programming problem:

(P)  Min f(z)
Subject to,
gi(z) <0 (i=1,2,...,m), xzeC.
The following lemmas relating to (P) results will be used here:
Lemma 1 ([24]). If Z is an optimal solution for (P), then there exists A € Ry
and p € RT', such that
m
0€XIf(Z) + > 1:idgi(T) + No(z)
i=1

#igi(Z) =0, i=1,2,....m
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(A p) >0, (A ) #£0

Lemma 2 ([24]). If T is an optimal solution for (P), and a Slater’s suitable
constraint qualification [11] holds for (P), then there exist non negative constants
p; (J=1,2,...,m), such that

0€df(z) + Zuiagi(:i) + No (), 2igilZ) =0, i=12,...,m.
i=1

1t is to be noted that under the above stated conditions of convexity on the func-
tions f and g;, (i = 1,2,...,m), these necessary conditions are also sufficient
for the optimality of T for (P).

3. Non-differentiable programming problem containing
support functions and duality

Let f: R® > Rand g; : R® — R (i = 1,2,...,m) be twice differentiable
functions. Let C and D; (¢ = 1,2,...,m) be compact convex sets in R"™. We
consider the following nondifferentiable nonlinear programming problem:

(NP) Min f(z) + S(z/C)
Subject to,
gi(x)+S(x/D;) <0, (i=12,...,m) (1)
In studying duality for (NP) certain optimality conditions in the non-smooth

setting will be required. These conditions which can be derived from [24] along
with the application of Lemma 1 and Lemma 2 are as follow:

Theorem 1. If T is an optimal solution for (NP), then there exists @ € R,
zeC,ye R™ and w; € D;, (i=1,2,...,m) such that

a(VH(E)+2) + Y 5i(Vgi(@) + ;) =0,

S w(Vau(e) + ol (7)) = 0.

7I(z) = S(&/C), and wl(F)=S(z/D;), forall i=1,2,....,m
(@,%) >0, (a,9) #0.

When a suitable constraint qualification holds for (NP) the above Fritz John
optimality conditions reduces to the Karush-Kuhn-Tucker optimality conditions,
as this asserts positiveness of the multiplier & associated with the objective func-
tion.

4. Mixed second order type duality

We propose the following mixed type second order dual type to the problem
(NP) which combines both Wolfe and Mond -Weir type dual models, considered
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in [9].Second order has tighter bound and enjoy computational advantage over
first order dual to any non-linear programming problem [16].

(Mix SD) : Maximizef(u) +u’ z + Z vi(gi(u) + vl w;)
i€lo

1 .
57 10+ oo
€10
Subject to

Vi) + 2+ ui(Vgilu) +w) + V(f(u) +y g(w)p =0 (2)

=1
: 1 e, ‘
> ilgi(w) +uTwi) — opTV ( > yif)'i('“’))f) >0,a=12,...,r (3)
i€l iel,
y=0 (4)
2€C, weDy, i=1,2,...,m. (5)

where
-
1. IL,CM ={1,2,....m}, a=0,1,2,...,r with {J I, = M and INIg=¢

p==0)
i ap. '
2.ue R*, pc R” and y € R™.

Theorem 2 (Weak Duality). Letx be feasible for (NP) and (u,y, 2,p, 01, - . ., W)
feasible for (MizSD). If for all feasible (x,u,y,z, Wi, ..., wm), () + )Tz 4+

S wilgi() + () Tw;) is second order pseudoinver and Y yi(g:(-) + () ws),
iclo 1€ o

a=1,2,...,7 is second order quasi-invex with respect to the same 1, then
inf(NP)> sup(Miz SD).
Proof. Since z is feasible for (NP) and (z,v, z,w, ..., wy,) feasible for (MixSD),

we have, in view of 27 w;<S(x | D;) where w;€D;, i = 1,2,...,m and for a =
1,2,...,7r

3 wloale) + S|P < 3 wilgile) + 2T ws)

i€l i€l

: 1 -
<0< Z yilgi(w) 4+ ulw;) — §I’TV2 ( L yz‘.(h‘(“))l)

€T,y 1€ o

By second order quasi-invexity of 3 wi(g;(-) + () Twi), @ = 1,2,...,r, it follows
i€l
that

" (2, u) (V(

Z y(gi{u) + uTwi)> + V2< }: yzgz(u)>p> <0, a=12,...,r

1€l i€l
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tewce (o) (V( 5 wlant) + ) ) + (S ) o) <0

ieM—Io €M I
Thus from (2), this yields

7o) (9 (100449 + 3wV + ) + V2 (10 1+ Y vt Jo) > 0

i€ty i€y

Since f(-)+() T2+ 3" vi(g:(-)+(-)Tw;) is second order pseudoinvex, this implies
i€lp

fl@)+z72+ Z vi(gi(2) +2Tw)) > flu) +ulz+ Z i (gi(z) + ul'w;)
icla icla

_lpTv2<f(u) +>° yigi(U)>P

2 ,
i€ly

Since z12<s(xjC), 2Tw;<S(xjD;), icly and g;(x) + S(zjD;)<0, together with
y<0, for i€y, the above inequality gives

J@)+5@/C) > f(u) +u"z 4 Y ilgiw) +uTws) — 2pTV? (f(u) +3 w(u))z)

i=Ig i=Ig
That is, infimum (NP)>supremum (MixSD}. O

Theorem 3 (Strong duality). If T is an optimal solution (NP) and Slater’s
constraint qualification [11] is satisfied at T, then there exists § € R™ with § =
(J1,92,---,Um), 2€C and w; € Dy, i = 1,2,...,m such that (Z,7, 2, W1, g, - - .,
W, p = 0) is feasible for (MizSD) and the corresponding values of (NP) and
(MizSD) are equal.

If also, fF(-)+()T24+ > v:(g: () +(-)Tw;) is second order pseudo-invex for zeC

i€y

and w,eD;, i€ly and Y yi(g:(-) + () Twy) for wieD;, i€ly, o = 1,2,...,7 is
iel,

second order quasi-invex with respect to the same 1, then (Z,7, Z,01, . .., Wy, p =

0) is an optimal solution of (Mix SD).

Proof. Since Z is an optimal solution to the problem (NP) and the Slater’s con-
straint qualification is satisfied at Z, then from Theorem 1, there exist § € R™,
zeCand w; € Dy, i=1,2,...,m such that

V(@) +2"2)+ >y V(@) + 2 w;) =0,
€1

> yilgi(@) + 3t wi) =0, 3z=S(z/0),

€1

irw, = S(z/D;), i=1,2,...,m,

zel, =w; € Dy, i=12,....m, y2>0
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The relation > y;(g:(%) + 27 w;) = 0 implies 3 %i(g:i(Z) + L @;) = 0 and
el iclo

> Gigi(@)+xlw;) = 0,0 =1,2,...,7. Consequently, it implies that (Z, 7, Z, Wy,

€]y

<+« Wy, p = 0) is feasible for (Mix SD) and the corresponding values of (NP) and

(MixSD) are equal. If f(-)+ ()72 + 3 wi(gi(-) + ()Tw;) is pseudoinvex, for all

i€l

2€C and wieD;, i =1,2,...,mand Y. yi(g:(-)+ (-)Tw;) is second order quasi-
€1y

convex for i€l,, a=1,2,...,r, then from Theorem 1 (Z, 7, Z, @1, ..., Wm,p = 0)

must be an optimal solution of (MixSD).

We shall prove a Mangasarian type [13] strict converse duality theorem for
(MixSD) to (NP). 0

Theorem 4 (Strict Converse duality). Let T be an optimal solution of (NP) at

solution of (MizSD), where w = (W1, ...,0m) and f() + ()T2+ 3 9i(g:() +

i€ly
(-Y";) is second order pseudoinver at & and icly, S 9ilg:i(-) + ()Tady), @ =
i€ly
1,2,...,r is second order quasi invexr at T with respect to the same 1, then T = %,

i.e. T is an optimal solution of (NP).

Proof. We shall assume that £#£% and exhibit a contradiction. Since Z is an
optimal solution of (NP) at which Slater’s qualification is satisfied, it follows
from Theorem 2 that there exists § € R™, 2 € C and w; € D;, i = 1,2,...,m
such that (Z, g, 2, W1, ..., W, p = 0) is optimal for (MixSD). Hence

f@)+8@/C) = f@)+z2 2+ Zﬂi(gi(f) + 2" y)

iely

k%pw (f(;f:) +y° ﬂi(gz‘(i’))y

i€lo

Since z is feasible for (NP) and (Z,9, 2,11, ..., Wm, D), © € I, is feasible for
(MixSD), we have

o . B o\
S ilo@) tan) < 3 @) o) - v X dato))
icl, icl, iel,

By second order quasi-invexity of Y §;(gi(-) + (-)T0;), this yields,
€1y
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0" (2, %) [ Y Viilgi(@) + dibi) + V2 Y ?Jz‘gi(i‘)ﬁ] <0
i€l i€l

V() +4 z>+2yzv<gz )+xwz>+v2(zylgz @) )p=0

=1 =1

From this equation, it implies

> uV(gi(# +m’wz)+V2(Zyzgz )>p

1€l €1,

[v(f )+E"E)+ D 9V (gild +xw1)+V2<Zyzgz )p}:o

i€ly i€lo
Using this in (7), we obtain
1 (@.8) V(@) +72) + 0 V(0) + a0+ V(@) )o] >0
i€l icl,

This, because of second order pseudo-invexity of > v;(g:(-) + (-)w;) implies

i€la
f@)+z7s+ Z 9i(gi(@) + zTw;) > fl@)+ 275+ Z §i(g: (%) + 2T ay)
i€lp iely
L roo ;
P1aAY ( F@)+ ) Gigi(#) x)

i€ly

Since 272 = S(z/C) and #7; = S(Z/D;), i = 1,2, ..., m, this implies

@) +8/C)+ Y ii(9:(&) + S(z/Dy))

iely
> f@) 4272+ dilgi(@) + aT;) — %ﬁTVZ’ (f(:%) +y z;igi(@)ﬁ
icly i€lp

Since §; > 0 and g,(z) + S(Z/D;) < 0 for all i€{1,2,...,m}, hence §; (g:(Z) +
S(z/D;)) <0, Viely. Thus from the inequality (8), we have

f(:i)%—S((i‘/C) Z f( + & 2+Zyz(gz +£C 'le)

i€l
1 roo . LY
—5P \Y <f(x)+§yz’gz‘(33)>p

This ensues a contradiction to (6). Hence & = z, i.e., % is an optimal solution of
(NP). This completes the proof of the theorem. |
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Theorem 5 (Converse duality). Let (z, 7, @, p) be an optimal solution to (MizSD)
at which
(Ay): for al e=1,2,.. . v, either

(a) The n x n Hessian matriz V2< > Ulg@(i)) is positive definite and

i€l
'V Y 4i(g:(2) + 2tw;) > 0 or
1€ o
) V2< 5 W gg(r)> is negative definite and TV S 7:(0:(Z) + Thw;) <0
i€l i€l

(Az): the set of vectors

{[ ( ZW'”” [ (Z%gm)) }»j::],Q,‘..,n

el el

a=1,2 ...,r, are linearly independent,

where [Va (f(i) > gm&a‘:))} is jth row of the ma‘mx[ ( (z)~ 5" qm(:c)ﬂ
J

1< 1o

and { ( > ylgz(x)>} is jth row of the matrix {V2< S ‘y};gi(:f:}”.
J

i€l i€l

(As): the vectors { ¥ 5i(Vgi(®) + wl)} a = 1,2,...,r, are linearly indepen-
icl,
dent.

If for all feasible (z, 2, y, u, w1, Wa, . . ., Wi, p), FO+C)T+ Y vilgi()+ ()T wy)
i€lo
is second order pseudoinvex and 3 wi(g:(-) + (-)Twy), a = 1,2,..., 7, is second
i,
order quasi-invex with respect to same 75, then 7 is an optimal solution of the
problem (NP).

Proof. Since (2, 2,4, @, p), where @ = (101, ©g, . . ., W) is an optimal solution of

(MixSD), by generalized Fritz John necessary optimality conditions, there exists,
TwER GER" 1, € R,a=1,2,...,r, 3 € R, and u € R™, such that

7-0{ —(Vf %; §i(Vgi(x) + i) + pV {V‘z (f(i') + iezloyigi(w)ﬁ”

+9{V2( f(z) + 5" 9(2)) + V(VA(f(@) + 7" 9(2))p)}

+ Zm{z 5i(Vgi(z) +w) — -—pTV[(V? > 271:9@'(:77)>p}} =0

i€l i€l
1 .
ﬂ){gi(iﬁ) + 27, - ~3}”7'TV2‘(),;(.’Ift)]‘i} 0" {Vgi (&) + w; 4 V2gi(2)p} 4 pi = 0,4 € Io

Ta{gm)m B Lz )p}wi“{(w Vb V(@) 4 =0,
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ie€ly, a=12,...,r

(o + " {7*(f0) - ¥ ma(@)) b+ £ 1) v Y mae) ) o0

i€ly a=1 i€l,

{Zy,gz + z wz)f—pV2Zyzng }:O, icly, a=1,2,...,7

i€ly ST

Tp+0 € Ni(Z), (0Z+0)y; € Np,(w), i€l
(10T + 0)y; € Np, (@), i€lpa=1,2,...,r, puly=0
(Tos Ty ooy Try 1) 20, (70, T15- 00, Try 0, ) # 0.

The relation (12),in view of assumption (A) yields, 7,p +6 = 0, o =
1,2,...,r, Multiplying (11) by %;,¢ € I, « = 1,2,...,7, and summing with
respect toi € Iy, a=1,2,...,r, we get

{Zyzgz +xwz)f—pV2Zylgl }

i€l, i€ o
+0T{Zyz\79, I) +w; + V2 Zyzgl )}:0, a=1,2...,r
i€l €1
Using (13) we get,
eT{ > (Vgi(f) ++ VY yigi(a‘;)ﬁ)} —0, a=1,2,...,r
i€l iel,
By using the equality constraint of the dual in (9), we get

(raB +60)" { & (f(x) -> yigz-(f)) +V {Vﬂ <f(:c) +y m(m)) }p}

i€ly i€lg

+ St {7 3 n0) + 99 o) o)

a=1 i€l i€l

nfv 5 me@ 0+ v S gan]

ieM—1Iqy ieM—1Ig

_%TOpT{V [V2 (f(f) + Z gigi(:f))]ﬁ}

i€y

+ZTQ{VZ% gi{z) + 7 w,)+V2<Zyzgz )ﬁ}

i€l, i€l

+Z Tap{ [V2<Zﬂigi(f)>]ﬁ}:o

t€la
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From (20), it implies,

aé(m - m{ ; 5 (Vgi(7) + w) v ( (z; yigi,(a-;)) ;-;}

+%9T{v {Vz (f(@ + Z ?igi(’i‘))}v W}L'V [VZ( 4 Z @‘égi(f))]ﬁ} =0

i€y ieM—1Ip

This implies

;(Ta*To{Zszge +wz)+V2(Zyzgz );5}

icl, i€l
45 V(P 1() + 7 9@)p)} =0

Assume that 7, = 0, for all o € {0,1,2,...,7}. Then § = 0 from (20}, p = 0,
i.e., (r0,71,.-.,7r,8,) = 0. This contradicts the Fritz John condition (20). Thus
there exists an « € {0,1,2,..., 7} such that 7, > 0.

The relation (20) can be rewritten as g+ 6 = 0, 7P +86 =0, a =
1,2,...,7, which implies (79 — 7,)p = 0 We claim § = 0. Suppose that p # 0.
Then (23) yields 70 = 75, a = 1,2,...,7. So from (20) we have § = —79p.
Using this in (21), we obtain

*7015{ > B(Ve(@) +w:) + V2<

1€ty

> @i%‘(@)ﬁ} =

i€l
= ﬁ{ > (V@) +w) + vz( > yig@(@)zs} =0.
icl, €1,
From the assumption {(A;), i.e., fora =1,2,...,r,

Py wlg(@) + @) > 0, W( > yz-gi@))ﬁ >0,

€1, 1€1,

Z yiéli(@)ﬁ # 0.

i€l
This is contradicted by (23). Hence p = 0. Using p = 0 in (22) we have

é:l(ﬂv - To){ ng Bi(Vgi(Z) + u';,-)} = 0.

By (Aj), this implies 7 = 7, > 0, a=1,2,...,r
Since § = 0, (10) and (11) implies

it follows

Py Uilg(@) +w) + ]._.;rv2<

icly

70(g:(Z) + L wg) + s =0, ¢(2) +Ew=-"<0,iel

Talgs(B) + 2] ®) + s = 0,5 Iy a=1,2,...,7
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Comparing these, we have ¢;(Z) + 1w = 8 <00 € To,i € Lo, @ =
1,2,...,7. From (15) and (16) we have z7w; = S(.Z|D;),i € Ip,i € I, =
0,1,2,...,r. The relation (25) along with this implies ¢;(Z)+S(.Z|D;) <0 i
0,1,2,...,m. This shows that Zis feasible for (NP)

Multiplying (25) by 4;, ¢ € Iy, and §;, ¢ € I, « = 1,2,...,r, and adding and
using u’y = 0,

2

S 9@ + @3 =0, 3 Gulg(@) + @id) = 0,

i€lp i€l

= f(z) + 7Tz using p=0 and (26)
= f(z)+ S(z|C.), by (14)

If, for all feasible (Z,Z, @, @1, ..., Wm,B), f() + ()T + 3 wilgi() + ()Twy) is

i€ly
second order pseudoinvex and Y w;(g:(-) + () Tw:), @ = 1,2,...,7, is second
i€l
order quasi-invex for z € C and w; € D; with respect to same 7, by Theorem
1,then Z is an optimal solution of the problem (NP). |

5. Special cases

If p = 0, the mixed type dual (MixSD) to the following to the following first
order mixed type dual formulated in [10].

(MixSD) : Maximize f(u) + u?z + Z vi(gi(u) + uTw;)

1€ly
Subject to
(Vf(u) + UTZ) + Zyi (Vgi(u) + uTwi) =0
i=1
3 wilgiw) + wTw) >0, a=1,2,...,7.
iel,

y>0, zeC, weD;, i=1,2,...,m.

T

where I,CM ={1,2,...,m},a=0,1,2,...,r with J I, = M and I, Ig = ¢
i=0

if atp. '

As discussed in [6], we may write for positive semi definite matrix B, S{.z|C) =
(2T Bz)? by taking C = {By|y" By < 1.}. If the support function appearing in
the constraints suppressed but the support function in the objective function of
(NP) is retained and replaced by (xTBx)%, then we have the following pair of
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problems treated by Zhang and Mond [28] and re-examined Zhang and Yang for
correcting the converse duality theorem proved in [29].

(P): Minimizef () + (wTBx)%

subject to
g(x) <0,
(SD) Maximize f(u) — Z vigi(u) +u’ 2
icly
1
~5V |1t + > wai)|p
1eio

subject to

Vi) =y g(u) + 2+ V2(f () + y" g(u))p =0
; yi(gi(u) +ulw;) — %pTW( > yz-gi(u)>p >0, a=12,...,m
wlz <1, y>0.

i=Io

T
where I,CM = {1,2,...,m}, « = 0,1,2,...,r with |J I, = M and I, Is = ¢
i—0

3=l

if a#£p.
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