Acknowledgement
The work of the third author was supported by DGRSDT, MESRS of Algeria (PRFU Project A14N01EP230220230001)
References
- M.A. Ali, M. Abbas, Z. Zhang, I.B. Sial and R. Arif, On integral inequalities for product and quotient of two multiplicatively convex functions, Asian Res. J. Math. 12 (2019), 1-11. https://doi.org/10.9734/arjom/2019/v12i330084
- M.A. Ali, M. Abbas and A.A. Zafer, On some Hermite-Hadamard integral inequalities in multiplicative calculus, J. Ineq. Special Func. 10 (2019), 111-122.
- M.A. Ali, Z. Zhang, H. Budak and M.Z. Sarikaya, On Hermite-Hadamard type inequalities for interval-valued multiplicative integrals, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 69 (2020), 1428-1448.
- M.A. Ali, H. Budak, M.Z. Sarikaya and Z. Zhang, Ostrowski and Simpson type inequalities for multiplicative integrals, Proyecciones 40 (2021), 743-763. https://doi.org/10.22199/issn.0717-6279-4136
- M. B. Almatrafi, W. Saleh, A. Lakhdari, F. Jarad and B. Meftah, On the multiparameterized fractional multiplicative integral inequalities, J. Inequal. Appl. (2024), pp 27.
- A.E. Bashirov, E.M. Kurpinar and A. Ozyapici, Multiplicative calculus and its applications. J. Math. Anal. Appl. 337 (2008), 36-48. https://doi.org/10.1016/j.jmaa.2007.03.081
- A.E. Bashirov, E. Misirli, Y. Tando'ggdu, On modeling with multiplicative differential equations, Appl. Math. J. Chin. Univ. 26 (2011), 425-438. https://doi.org/10.1007/s11766-011-2767-6
- D.C. Benchettah, A. Lakhdari and B. Meftah. Refinement of the general form of the twopoint quadrature formulas via convexity, Journal of Applied Mathematics, Statistics and Informatics 19 (2023), 93-101.
- A. Berhail and B. Meftah, Refinement of midpoint and trapezoid type inequalities for multiplicatively convex functions, Sahand Commun. Math. Anal. 21 (2022), 267-278.
- H. Boulares, B. Meftah, A. Moumen, R. Shafqat, H. Saber, T. Alraqad and E. Ahmad, Fractional multiplicative Bullen type inequalities for multiplicative differentiable functions, Symmetry 15 (2023), p. 451.
- H. Budak and K. Ozcelik, On Hermite-Hadamard type inequalities for multiplicative fractional integrals, Miskolc Math. Notes 21 (2020), 91-99. https://doi.org/10.18514/MMN.2020.3129
- S. Chasreechai, M.A. Ali, S. Naowarat, T. Sitthiwirattham and K. Nonlaopon, On some Simpson's and Newton's type of inequalities in multiplicative calculus with applications, AIMS Math. 8 (2023), 3885-3896.
- T. Chiheb, N. Boumaza and B. Meftah, Some new Simpson-like type inequalities via preqausiinvexity, Transylv. J. Math. Mech. 12 (2020), 1-10.
- S.S. Dragomir, J.E. Pecaric and J. Sandor, A note on the Jensen-Hadamard inequality, Anal. Numer. Theor. Approx. 19 (1990), 29-34.
- T. Du, Y. Li and Z. Yang, A generalization of Simpson's inequality via differentiable mapping using extended (s,m)-convex functions, Appl. Math. Comput. 293 (2017), 358-369.
- T.S. Du, C.Y. Luo, Z.J. Cao, On the Bullen-type inequalities via generalized fractional integrals and their applications, Fractals 29 (2021), Article ID 2150188, 20 pages.
- T.S. Du, T.C. Zhou, On the fractional double integral inclusion relations having exponential kernels via interval-valued co-ordinated convex mappings, Chaos, Solitons & Fractals 156 (2022), Article ID 111846, 19 pages.
- L. Florack, H.V. Assen, Multiplicative calculus in biomedical image analysis, J. Math. Imaging Vis. 42 (2012), 64-75. https://doi.org/10.1007/s10851-011-0275-1
- A. Frioui, B. Meftah, A. Shokri, A. Lakhdari and H. Mukalazi, Parametrized multiplicative integral inequalities, Adv. Contin. Discrete Models (2024), pp. 18.
- H. Fu, Y. Peng and T. Du, Some inequalities for multiplicative tempered fractional integrals involving the λ-incomplete gamma functions, AIMS Math. 6 (2021), 7456-7478. https://doi.org/10.3934/math.2021436
- M. Grossman and R. Katz, Non-Newtonian calculus, Lee Press, Pigeon Cove, Mass., 1972.
- S. Khan and H. Budak, On midpoint and trapezoid type inequalities for multiplicative integrals, Mathematica 64 (2022), 95-108. https://doi.org/10.24193/mathcluj.2022.1.11
- A. Lakhdari and B. Meftah, Some fractional weighted trapezoid type inequalities for preinvex functions, Int. J. Nonlinear Anal. Appl. 13 (2022), 3567-3587.
- B. Meftah, Ostrowski's inequality for functions whose first derivatives are s-preinvex in the second sense, Khayyam J. Math. 3 (2017), 61-80.
- B. Meftah, Fractional Hermite-Hadamard type integral inequalities for functions whose modulus of derivatives are co-ordinated log-preinvex, Punjab Univ. J. Math. (Lahore) 51 (2019), 21-37.
- B. Meftah, Maclaurin type inequalities for multiplicatively convex functions, Proc. Amer. Math. Soc. 151 (2023), 2115-2125.
- B. Meftah and A. Lakhdari, Dual Simpson type inequalities for multiplicatively convex functions, Filomat 37 (2023), 7673-7683.
- B. Meftah, A. Lakhdari and W. Saleh, 2-point left Radau-type inequalities via s-convexity, Journal of Applied Analysis 29 (2023), 341-346.
- B. Meftah, H. Boulares, A. Khan and T. Abdeljawad. Fractional multiplicative Ostrowskitype inequalities for multiplicative differentiable convex functions, Jordan J. Math. Stat. To appear.
- B. Meftah, A. Lakhdari, W. Saleh and D.C. Benchettah, Companion of Ostrowski inequality for multiplicatively convex functions, Sahand Commun. Math. Anal. 21 (2024), 289-304.
- A. Moumen, H. Boulares, B. Meftah, R. Shafqat, T. Alraqad, E.E. Ali and Z. Khaled, Multiplicatively Simpson Type Inequalities via Fractional Integral, Symmetry 15 (2023), p. 460.
- S. Ozcan, Hermite-Hadamard type inequalities for multiplicatively s-convex functions, Cumhuriyet Sci. J. 41 (2020), 245-259. https://doi.org/10.17776/csj.663559
- J.E. Pecaric, F. Proschan and Y.L. Tong, Convex functions, partial orderings, and statistical applications, Mathematics in Science and Engineering, 187. Academic Press, Inc., Boston, MA, 1992.
- Y. Peng, H. Fu and T.S. Du, Estimations of bounds on the multiplicative fractional integral inequalities having exponential kernels, Commun. Math. Stat., 12 (2022), 187-211. https://doi.org/10.1007/s40304-022-00285-8
- Y. Peng and T.S. Du, Fractional Maclaurin-type inequalities for multiplicatively convex functions and multiplicatively P-functions, Filomat 37 (2023), 9497-9509. https://doi.org/10.2298/FIL2328497P
- W. Saleh, S. Meftah and A. Lakhdari, Quantum dual Simpson type inequalities for qdifferentiable convex functions, Int. J. Nonlinear Anal. Appl. 14 (2023), 63-76.
- E. Set, M. Emin Ozdemir and S.S. Dragomir, On Hadamard-type inequalities involving several kinds of convexity, J. Inequal. Appl. (2010), Art. ID 286845, P. 12.
- G. Singh, S. Bhalla, Two step Newton's method with multiplicative calculus to solve the non-linear equations, J. Comput. Anal. Appl. 31 (2023), 171-179.
- B.-Y. Xi and F. Qi, Some integral inequalities of Hermite-Hadamard type for slogarithmically convex functions, Acta Mathematica Scientis, English Series 35 (2015), 515-526.
- W.S. Zhu, B. Meftah, H. Xu, F. Jarad and A. Lakhdari, On parameterized inequalities for fractional multiplicative integrals, Demonstr. Math. 57 (2024), pp. 17.