CONVERGENCE THEOREMS ON VISCOSITY APPROXIMATION METHODS FOR FINITE NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Published : 2009.02.28

Abstract

Strong convergence theorems on viscosity approximation methods for finite nonexpansive mappings are established in Banach spaces. The main theorem generalize the corresponding result of Kim and Xu [10] to the viscosity approximation method for finite nonexpansive mappings in a reflexive Banach space having a uniformly Gateaux differentiable norm. Our results also improve the corresponding results of [7, 8, 19, 20].

Keywords

References

  1. C. Byne: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Problem 20 (2004), 103-120. https://doi.org/10.1088/0266-5611/20/1/006
  2. S.S. Chang, Y.J. Cho, B.S. Lee, J.S. Jung & S. M. Kang: Iterative approximations of fixed points and solutions for strongly accretive and strongly pseudo-contractive mappings in Banach spaces. J. Math. Anal. appl. 224 (1998), 149-165. https://doi.org/10.1006/jmaa.1998.5993
  3. C.E. Chidume: Global iteration schemes for strongly pseudo-contractive maps. Proc. Amer. Math. Soc. 126 (1998), 2641-2649. https://doi.org/10.1090/S0002-9939-98-04322-6
  4. I. Cioranescu: Geometry of Banach spaces, Duality Mappings and Nonlinear Problems. Lluwer, Dordrecht, 1990.
  5. J. Diestel: Geometry of Banach Spaces. Lectures Notes in Math. 485, Springer-Verlag, Berlin, Heidelberg, 1975.
  6. K. Goebel & S. Reich: Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings. Marcel Dekker, New York and Basel, 1984.
  7. J.S. Jung : Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 302 (2005), 509-520. https://doi.org/10.1016/j.jmaa.2004.08.022
  8. J.S. Jung : Viscosity approximation methods for a family of finite nonexpansive mappings in Banach spaces. Nonlinear Anal. 64 (2006), 2536-2552. https://doi.org/10.1016/j.na.2005.08.032
  9. J.S. Jung & C. Morales: The Mann process for perturbed m-accretive operators in Banach spaces. Nonlinear Anal. 46 (2001), 231-243. https://doi.org/10.1016/S0362-546X(00)00115-2
  10. T.H. Kim & H.K. Xu: Strong convergence of modified Mann iterations. Nonlinear Anal. 61 (2005), 51-60. https://doi.org/10.1016/j.na.2004.11.011
  11. L.S. Liu: Iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces. J. Math. Anal. Appl. 194 (1995), 114-125. https://doi.org/10.1006/jmaa.1995.1289
  12. A. Moudafi: Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl. 241 (2000), 46-55. https://doi.org/10.1006/jmaa.1999.6615
  13. K. Nakajo & W. Takahashi: Strong convergence theorems for nonexpansive mappings and semigroups. J. Math. Anal. Appl. 279 (2003), 372-379. https://doi.org/10.1016/S0022-247X(02)00458-4
  14. C.J. Podilchuk & R.J. Mammone: Image recovery by convex projecting using a least-squares constraint. J. Opt. Soc. Am. A 7 (1990), 517-521.
  15. M.I. Sezan & H. Stark: Applications of conνex projection theory to image recovery in tomography and related areas, H. Stark (Ed.). Image Recovery Theory and Applications, Academic Press, Orlando, 1987, 415-462.
  16. N. Shioji & W. Takahashi: Strong convergence of approximated sequences for non­expansive mappings in Banach spaces. Proc. Amer. Math. Soc. 125 (1997), no. 12, 3641-3645. https://doi.org/10.1090/S0002-9939-97-04033-1
  17. T. Suzuki: Strong convergence of Krasnoselskii and Mann's type sequences for one parameter nonexpansive semigroups without Bochner integrals. J. Math. Anal. Appl. 305 (2005), 227-239. https://doi.org/10.1016/j.jmaa.2004.11.017
  18. H.K. Xu: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298 (2004), 279-291. https://doi.org/10.1016/j.jmaa.2004.04.059
  19. Y.H. Yao, R.D. Chen & J.C. Yao: Strong convergence and certain control conditions of modified Mann iteration. Nonlinear Anal. 68 (2008) 1687-1693. https://doi.org/10.1016/j.na.2007.01.009
  20. H.Y. Zhou, L. Wei & Y.J. Cho: Strong convergence theorems on an iterative method for a family of finite nonexpansive mappings in reflexive Banach spaces. Appl. Math. and Comput. 173 (2006), 196-212. https://doi.org/10.1016/j.amc.2005.02.049