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ON THE SOLUTION OF NONLINEAR EQUATIONS
CONTAINING A NON-DIFFERENTIABLE TERM

Ioannis K. Argyros

Abstract. We approximate a locally unique solution of a nonlinear oper-
ator equation containing a non–differentiable operator in a Banach space

setting using Newton’s method. Sufficient conditions for the semilocal

convergence of Newton’s method in this case have been given by several
authors using mainly increasing sequences [1]–[6]. Here, we use center

as well as Lipschitz conditions and decreasing majorizing sequences to

obtain new sufficient convergence conditions weaker than before in many
interesting cases. Numerical examples where our results apply to solve

equations but earlier ones cannot [2], [5], [6] are also provided in this

study.

1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x? of equation

(1.1) F (x) +G(x) = 0,

where, for X , Y being Banach spaces, and D an open convex subset of X ,
F : X −→ Y is a Fréchet–differentiable operator, and G : X −→ Y is a
continuous operator.

A large number of problems in applied mathematics and also in engineering
are solved by finding the solutions of certain equations. For example, dynamic
systems are mathematically modeled by difference or differential equations,
and their solutions usually represent the states of the systems. For the sake
of simplicity, assume that a time–invariant system is driven by the equation
ẋ = Q(x), for some suitable operator Q, where x is the state. Then the equi-
librium states are determined by solving equation (1.1). Similar equations are
used in the case of discrete systems. The unknowns of engineering equations
can be functions (difference, differential, and integral equations), vectors (sys-
tems of linear or nonlinear algebraic equations), or real or complex numbers
(single algebraic equations with single unknowns). Excpet in special cases,
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the most commonly used solution methods are iterative–when starting from
one or several initial approximations a sequence is constructed that converges
to a solution of the equation. Iteration methods are also applied for solving
optimization problems. In such cases, the iteration sequences converge to an
optimal solution of the problem at hand. Since all of these methods have the
same recursive structure, they can be introduced and discussed in a general
framework.

The method of successive approximations or Newton–type methods:

(1.2) xn+1 = xn − F ′(xn)−1 (F (xn) +G(xn)) (n ≥ 0), (x0 ∈ D),

has been used by many authors to generate a sequence {xn} approximating
x?. A survey of convergence results for Newton’s method (1.2) under mainly
Lipschitz–type conditions and increasing majorizing sequences can be found in
[4] (see also [1]–[3], [5], [6], and Section 2).

In the special case when G = 0, method (1.2) reduces to the classical New-
ton’s method, while in the case when F is linear and G′(x0) = 0, method (1.2)
becomes the modified Newton’s method [1]–[6].
The sufficient convergence conditions for method (1.2) are not optimal, only
necessary, so that one can provide examples (see Example 3.1) where method
(1.2) converges but the existing conditions do not hold.

Motivated by this observation and optimization considerations, we pro-
vide a new semilocal convergence analysis for method (1.2) using: center–
Lipschitz conditions (instead of the less accurate Lipschitz conditions used
in earlier works [1], [2], [5], [6] for the computation of the upper bounds on
‖ F ′(xn)−1 F ′(x0) ‖; Lipschitz conditions and decreasing instead of increasing
majorizing sequences. It turns out that this way weaker sufficient convergence
conditions are obtained in many intersting cases.

Numerical examples are also provided to show that our results can apply to
solve equations in cases the earlier results referred to above cannot.

2. Semilocal convergence analysis of method (1.2)

We need the following result on majorizing sequences for method (1.2)

Lemma 2.1. Let η ≥ 0, l0 > 0, l > 0, and l1 ≥ 0 be given constants. Set

t0 =
1
l
.
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Define functions ∆, A, C on [0,+∞)2, and B on [0,+∞) by

∆(t, γ) =
(
l t+ l1

)2

− (l − 2 γ l0) t
(
l t+ 2 l1

)
,

A(t, γ) = 2
(
l t+ l1 +

√
∆(t, γ)

)
,

B(t) = 2
(
l t+ 2 l1

)
,

and

C(t, γ) =
B(t)
A(t, γ)

.

Assume that the function ft defined by

(2.1) ft(x) = 1− x− C(t, x)

has a non–negative zero γ0 = γ(t0) at t = t0, such that:

(2.2) β = 2 l0 η ≤ γ0 ≤
l

2 l0
or if

(2.3) ft0(β) ≥ 0,

and (2.2) hold;
or if function ft has a non–negative zero γ1

0 at t = t1, such that

(2.4) γ1
0 ≤

l

2 l0
,

and

(2.5) β < β0,

where

(2.6) β0 = 4
[
l1 + 2 +

√
(l1 + 2)2 + 4

(
l

2 l0
− 1
)]−1

;

or if

(2.7) ft1(β1) ≤ 0, β1 = min
{
β0,

l

2 l0

}
,

(2.8) ft1(β) ≥ 0,

(2.4) and (2.5) hold.
Note that the existence of γ0 or γ1

0 follows from the intermediate value theorem

applied to function ft0 or ft1 on the interval
[
β,

l

2 l0

]
or [β, β1] (for β < β1),
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respectively.
Then, scalar sequence {tn} (n ≥ 0) generated by

(2.9)

t0 =
1
l0
, t1 = t0 − η,

tn+1 = tn −

(
l (tn−1 − tn) + 2 l1

)
(tn−1 − tn)

2 l0 tn
(n ≥ 1),

is well defined, decreasing, and converges to some t? ∈ [0, t0].

Proof. If η = 0, then tn = t0 = t? (n ≥ 1). Let us assume η 6= 0. Function
∆ is a quadratic polynomial with leading coefficient 2 l0 γ0, and whose sign of
the discriminant is the same with: 2 γ0 l0 (2 γ0 l0− l). It then follows by (2.2)
that functions A and C are well defined. It also follows by definition of γ0 that
γ0 ∈ (0, 1). We can set:

tn+1

tn
= 1− γn,

where,

γn = γ(tn) =

(
l (tn−1 − tn) + 2 l1

)
(tn−1 − tn)

2 l t2n
(n ≥ 1).

We shall show: tk ≥ (1−γ0) tk−1, which together with tk−1 > 0 implies implies
0 < tk < tk−1. But, tk ≥ (1− γ0) tk−1 holds if 1− γk ≥ 1− γ0 or γk ≤ γ0 or

(l − 2 l0 γ0) t2k − 2
(
l tk−1 + l1

)
tk +

(
l tk−1 + 2 l1

)
tk−1 ≤ 0

or tk ≥ C(tk−1, γ0) tk−1. Using (2.2), (2.9), we get:
t1 ≥ (1− γ0) t0 =⇒ t1 ≥ C(t0, γ0) t0 ⇐⇒ t2 ≥ (1− γ0) t1.
Similary, if (2.5)–(2.8) hold, then t2 > 0, and t3 ≥ (1− γ1

0) t2. By analogy, we
show:
tk−1 ≥ (1−γ0) tk−2 =⇒ tk−1 ≥ C(t0, γ0) tk−2 ⇐⇒ tk ≥ (1−γ0) tk−1 (k ≥ 1).
The induction is completed. Hence, sequence {tn} (n ≥ 0) is decreasing posi-
tive, and as such it converges to some t? ∈ [0, t0].
That completes the proof of Lemma 2.1. �

We can show the following semilocal convergence theorem for method (1.2):

Theorem 2.2. Let F : D ⊆ X −→ Y be a Fréchet–differentiable operator,
and G : D −→ Y be a continuous operator.
Assume there exist x0 ∈ D, and constants η ≥ 0, l0 > 0, l > 0, and l1 > 0,
such that for x, y ∈ D, the following conditions hold:

(2.10) F ′(x0)−1 ∈ L(Y,X );

(2.11) ‖ F ′(x0)−1 (F (x0) +G(x0)) ‖≤ η;
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(2.12) ‖ F ′(x0)−1 (F ′(x)− F ′(y)) ‖≤ l ‖ x− y ‖;

(2.13) ‖ F ′(x0)−1 (F ′(x)− F ′(x0)) ‖≤ l0 ‖ x− x0 ‖;

(2.14) ‖ F ′(x0)−1 (G(x)−G(y)) ‖≤ l1 ‖ x− y ‖;

(2.15) U(x0, t0 − t?) = {x ∈ X : ‖ x− x0 ‖≤ t0 − t?} ⊆ D,

where t? is given in Lemma 2.1, and hypotheses of Lemma 2.1 hold.
Then, sequence {xn} (n ≥ 0), generated by method (1.2) is well defined, re-
mains in U(x0, t0 − t?) for all n ≥ 0, and converges to a solution x? ∈
U(x0, t0 − t?) of equation F (x) +G(x) = 0.
Moreover, the following estimates hold for all n ≥ 0:

(2.16) ‖ xn+1 − xn ‖≤ tn − tn+1

and

(2.17) ‖ xn − x? ‖≤ tn − t?.

Furthemore, if

(2.18) (l + 2 l0) (t0 − t?) + 2 l1 < 2,

the solution is unique in U(x0, t0 − t?).
Finally, if there exists t?? > t?, such that

(2.19) l (t0 − t??)− 2 l0 (t? − t0) + 2 l1 ≤ 2,

then the solution x? is unique in U(x0, t0 − t??).

Proof. We shall show by induction on n ≥ 0 that (2.16) holds. Estimates (2.17)
will then follow from (2.16) using standard majorization techniques [3], [4], [6].
Since

‖ x1 − x0 ‖≤ η = t0 − t1,
(2.16) holds for n = 0, and we have by (2.13):

(2.20)
‖ F ′(x0)−1 (F ′(x1)− F ′(x0)) ‖ ≤ l0 ‖ x1 − x0 ‖

≤ l0 (t0 − t1) < 1.

It follows from (2.20), and the Banach lemma on invertible operators [3], [4]
that F ′(x1)−1 exists, and

(2.21)
‖ F ′(x1)−1 F ′(x0) ‖ ≤ (1− l0 ‖ x1 − x0 ‖)−1

≤ (1− l0 (t0 − t1))−1.

Assume that for 1 ≤ k ≤ n: ‖ xk − xk−1 ‖≤ tk−1 − tk. Then

‖ xk − x0 ‖≤ t0 − tk ≤ t0 − t?.

As in (2.20) for xk replacing x1, we obtain F ′(xk)−1 exists, and

(2.22) ‖ F ′(xk)−1 F ′(x0) ‖≤ (1− l0 ‖ xk − x0 ‖)−1 ≤ (1− l0 (t0 − tk))−1.
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Using (1.2), we obtain [3], [4]:

‖ xk+2 − xk+1 ‖

≤‖ F ′(xk+1)−1 F ′(x0) ‖
(∫ 1

0

‖ F ′(x0)−1 F ′(xk + t (xk+1 − xk))

− F ′(xk)) ‖ dt+ ‖ F ′(x0)−1 (G(xk+1)−G(xk)) ‖
)
‖ xk+1 − xk ‖

≤ (l ‖ xk+1 − xk ‖ +2 l1) ‖ xk+1 − xk ‖
2 (1− l0 ‖ xk+1 − x0 ‖)

≤ (l (tk − tk+1) + 2 l1) (tk − tk+1)
2 (1− l0 (t0 − tk+1))

= tk+1 − tk+2,

(2.23)

which completes the induction for (2.16).
It follows by Lemma 2.1, and (2.23) that {xn} is a Cauchy sequence in a

Banach space X , and as such it converges to some x? ∈ U(x0, t0 − t?) (since
U(x0, t0 − t?) is a closed set). By letting k −→∞ in (2.23) we obtain F (x?) +
G(x?) = 0.
To show uniqueness of the solution first in U(x0, t0−t?), let: y? ∈ U(x0, t0−t?)
be a solution of equation (1.1).
Using (1.2), we obtain the identity:

xk+1 − y? = xk − y? − F ′(xk)−1 (F (xk) +G(xk))

= −(F ′(xk)−1 F ′(x0))
(
F ′(x0)−1 (F (xk)− F (y?)

− F ′(xk) (xk − y?)) + F ′(x0)−1 (G(xk)−G(y?))
)
.

(2.24)

By (2.12), (2.14), (2.22), and (2.24), we get in turn:

‖ xk+1 − y? ‖
≤‖ F ′(xk)−1 F ′(x0) ‖(

‖ F ′(x0)−1 (F (xk)− F (y?)− F ′(xk) (xk − y?)) ‖

+ ‖ F ′(x0)−1 (G(xk)−G(y?)) ‖
)
.

≤ (l ‖ xk − y? ‖ +2 l1) ‖ xk − y? ‖
2 (1− l0 ‖ xk − x0 ‖)

<‖ xk − y? ‖ (by (2.18)).

(2.25)
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In view of (2.25), we obtain lim
k−→∞

xk = y?. But we also showed lim
k−→∞

xk = x?.

hence, we deduce x? = y?.
Finally, if y? ∈ U(x0, t

?), using (2.19), we again deduce ‖ xk+1 − y? ‖<‖
xk − y? ‖, which also implies x? = y?.
That completes the proof of Theorem 2.2. �

Remark 2.3. The conclusions on the uniqueness of the solution x? hold if in
(2.18) or (2.19), t? is replaced by t0.

We state the following semilocal convergence theorem for method (1.2) for
comparison purposes. The proof can be found in [3], [4], [6]:

Theorem 2.4. Let F : D ⊆ X −→ Y be a Fréchet–differentiable operator,
and G : D −→ Y be a continuous operator.
Assume there exist x0 ∈ D, and constants η ≥ 0, l > 0, and l1 > 0, such that
(2.10), (2.11), (2.12), (2.14), and the following hold:

U(x0, r
?) ⊆ D,

and

(2.26) (l + l1) η ≤ 1
2
,

where

(2.27) r? = lim
n−→∞

rn,

(2.28)

r0 = 0, r1 = η,

rn+1 = rn −

(
l (rn − rn−1) + 2 l1

)
(rn − rn−1)

2 l rn
(n ≥ 1).

Then, sequence {xn} (n ≥ 0), generated by method (1.2) is well defined, re-
mains in U(x0, r

?) for all n ≥ 0, and converges to a unique solution of equa-
tion (1.1) in U(x0, r

?), so estimates (2.16) and (2.17) hold with sequence {tn}
replaced by {rn}.

Remark 2.5. Using Mathematica, we found that the value of γ0 is given by:

(2.29) γ0 = a+
(

b

322/3 (c+ d)1/3
+

(c+ d)1/3

621/3

)
1

l0 t0
,

where

a =
l + 4 l0

6 l0
,

b =
(

(l + 4 l0)2 t0 + 12 l0 (l1 − l0 t0)
)
t0,
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c = 2
(

18 (l t0 + l1) l0 l + 54 (l t0 + 2 l1) l20 − 36 (l t0 + l1) l20+

l3 t0 − 6 l2 l0 t0 + 12 l l20 t0 − 8 l3 t0

)
t0,

and
d = (c2 − 4 b3)2/3.

In the interesting case when l1 = 0 (i.e. G = 0) (Newton’s method), we get use
(2.29)

(2.30) γA := γ0 = γ1
0 =
√
l2 + 8 l0 l − l√
l2 + 8 l0 l + l

.

Note that in this case γ0 ∈ (0,
1
2

], with γ0 =
1
2

, when l0 = l.

3. Special cases and applications

A direct comparison between Theorems 2.2 and 2.4 is not possible in general,
since the sufficient conditions are not the same and majorizing sequence {tn}
is decreasing, whereas {rn} is increasing. However a comparison is possible in
some interesting special cases.

1. Case G = 0. The sufficient convergence conditions of Theorems 2.2 and
2.4 becomes respectively

(3.1) hA = l0 η ≤ γA,

and

(3.2) hK = l η ≤ 1
2
,

Note that

(3.3) l0 ≤ l

hold in general, and
l

l0
can be arbitrarily large [3], [4]. It also follows from

(2.30), (3.1)–(3.3) that conditions (3.1), and (3.2) coincide if l0 = l. Otherwise
(3.1) improves (3.2), since

(3.4)
l

l0
γA >

1
2

for l0 6= l.

Note that this improvement is obtained under the computational cost, since in
practice the computation of constant l also requires the computation of l0.

2. Case G 6= 0. In this case we can only compare Theorem 2.2 with Theorem
2.4 using numerical examples.
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Example 3.1. Let X = Y = IR, x0 = 1, D = [δ, 2− δ], δ ∈ [0,
1
2

), and define
function F and G on D by

(3.5) F (x) = x3 − δ and G(x) = ε |x− 1|,

where, ε is a given real number.
Using (2.11)–(2.14), and (3.5), we obtain:

η =
1
3

(1− δ), l0 = 3− δ, l = 2 (2− δ), and l1 = |ε|.

Note that function G is not differentiable at x0 = 1.
Hypothesis (3.2) is violated, since

(3.6) 4 (2− δ)
(

1
3

(1− δ) + |ε|
)
> 1 for all ε, and δ ∈ [0,

1
2

).

That is there is no guarantee that sequence {xn} converges to x?.
However, our Theorem 2.2 can apply to solve equation F (x) +G(x) = 0.

Let us consider two cases:
1. Case ε = 0. The conditions of Theorem 2.2 are satisfied when (3.1) holds,

where γ0 is given by (2.30). It then follows that (3.1) hold for δ ∈ [.450339002,
1
2

],

which coincides with the range found by us in [3] for this case but using a dif-
ferent approach.
2. Case ε 6= 0. Choose e.g.: ε = .1, and δ = .49. Then, we get:

η = .17, l0 = 2.51, l = 3.02, l1 = .1, t0 = .398406374,
t1 = .22840637, γ0 = .410812, γ1

0 = .369936,

β = .8534,
l

2 l0
= .601593625, and β0 = 1.058703597.

Hence hypotheses (2.5) and (2.6) are satisfied. That is the conclusions of The-
orem 2.2 apply to solve equation (1.1), which F , G given by (3.5).
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