• Title/Summary/Keyword: bounded A-linear operator

검색결과 105건 처리시간 0.022초

STRONG LAWS OF LARGE NUMBERS FOR LINEAR PROCESSES GENERATED BY ASSOCIATED RANDOM VARIABLES IN A HILBERT SPACE

  • Ko, Mi-Hwa
    • 호남수학학술지
    • /
    • 제30권4호
    • /
    • pp.703-711
    • /
    • 2008
  • Let ${{\xi}_k,k{\in}{\mathbb{Z}}}$ be an associated H-valued random variables with $E{\xi}_k$ = 0, $E{\parallel}{\xi}_k{\parallel}$ < ${\infty}$ and $E{\parallel}{\xi}_k{\parallel}^2$ < ${\infty}$ and {$a_k,k{\in}{\mathbb{Z}}$} a sequence of bounded linear operators such that ${\sum}^{\infty}_{j=0}j{\parallel}a_j{\parallel}_{L(H)}$ < ${\infty}$. We define the sationary Hilbert space process $X_k={\sum}^{\infty}_{j=0}a_j{\xi}_{k-j}$ and prove that $n^{-1}{\sum}^n_{k=1}X_k$ converges to zero.

STABILITY OF A TWO-STRAIN EPIDEMIC MODEL WITH AN AGE STRUCTURE AND MUTATION

  • Wang, Xiaoyan;Yang, Junyuan;Zhang, Fengqin
    • Journal of applied mathematics & informatics
    • /
    • 제30권1_2호
    • /
    • pp.183-200
    • /
    • 2012
  • A two-strain epidemic model with an age structure mutation and varying population is studied. By means of the spectrum theory of bounded linear operator in functional analysis, the reproductive numbers according to the strains, which associates with the growth rate ${\lambda}^*$ of total population size are obtained. The asymptotic stability of the steady states are obtained under some sufficient conditions.

ON KATO`S DECOMPOSITION THEOREM

  • YONG BIN CHOI;YOUNG MIN HAN;IN SUNG HWANG
    • 대한수학회논문집
    • /
    • 제9권2호
    • /
    • pp.317-325
    • /
    • 1994
  • Suppose X is a complex Banach space and write B(X) for the Banach algebra of bounded linear operators on X, X* for the dual space of X, and T*$\in$ B(X*) for the dual operator of T. For T $\in$ B(X) write a(T) = dim T$^{-1}$ (0) and $\beta$(T) = codim T(X).(omitted)

  • PDF

Operators on a finite dimensional space

  • Ko, Eungil
    • 대한수학회보
    • /
    • 제34권1호
    • /
    • pp.19-28
    • /
    • 1997
  • Let $H$ and $K$ be separable, complex Hilbert spaces and $L(H, K)$ denote the space of all linear, bounded operators from $H$ to $K$. If $H = K$, we write $L(H)$ in place of $L(H, K)$. An operator $T$ in $L(H)$ is called hyponormal if $TT^* \leq T^*T$, or equivalently, if $\left\$\mid$ T^*h \right\$\mid$ \leq \left\$\mid$ Th \right\$\mid$$ for each h in $H$. In [Pu], M. Putinar constructed a universal functional model for hyponormal operators.

  • PDF

A NOTE ON QUASI-SIMILAR QUASI-HYPONORMAL OPERATORS

  • Lee, Moo-Sang
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제2권2호
    • /
    • pp.91-95
    • /
    • 1995
  • Let H be an arbitrary complex Hilbert space and let (equation omitted)(H) be the *-algebra of all bounded linear operators on H. An operator T in (equation omitted)(H) is called normal if T$\^$*/T = TT$\^$*/, hyponormal if T$\^$*/T $\geq$ TT$\^$*/, and quasi-hyponormal if T$\^$*/(T$\^$*/T - TT$\^$*/)A $\geq$ 0, or equivalently ∥T$\^$*/T$\chi$$\leq$ ∥TT$\chi$∥ for all $\chi$ in H.(omitted)

  • PDF

Estimations of Zeros of a Polynomial Using Numerical Radius Inequalities

  • Bhunia, Pintu;Bag, Santanu;Nayak, Raj Kumar;Paul, Kallol
    • Kyungpook Mathematical Journal
    • /
    • 제61권4호
    • /
    • pp.845-858
    • /
    • 2021
  • We present new bounds for the numerical radius of bounded linear operators and 2 × 2 operator matrices. We apply upper bounds for the numerical radius to the Frobenius companion matrix of a complex monic polynomial to obtain new estimations for the zeros of that polynomial. We also show with numerical examples that our new estimations improve on the existing estimations.

A CHARACTERIZATION OF LOCAL RESOLVENT SETS

  • Han Hyuk;Yoo Jong-Kwang
    • 대한수학회논문집
    • /
    • 제21권2호
    • /
    • pp.253-259
    • /
    • 2006
  • Let T be a bounded linear operator on a Banach space X. And let ${{\rho}T}(X)$ be the local resolvent set of T at $x\;{\in}\;X$. Then we prove that a complex number ${\lambda}$ belongs to ${{\rho}T}(X)$ if and only if there is a sequence $\{x_{n}\}$ in X such that $x_n\;=\;(T - {\lambda})x_{n+1}$ for n = 0, 1, 2,..., $x_0$ = x and $\{{\parallel}x_n{\parallel}^{\frac{1}{n}}\}$ is bounded.

WEYL'S TYPE THEOREMS FOR ALGEBRAICALLY (p, k)-QUASIHYPONORMAL OPERATORS

  • Rashid, Mohammad Hussein Mohammad;Noorani, Mohd Salmi Mohd
    • 대한수학회논문집
    • /
    • 제27권1호
    • /
    • pp.77-95
    • /
    • 2012
  • For a bounded linear operator T we prove the following assertions: (a) If T is algebraically (p, k)-quasihyponormal, then T is a-isoloid, polaroid, reguloid and a-polaroid. (b) If $T^*$ is algebraically (p, k)-quasihyponormal, then a-Weyl's theorem holds for f(T) for every $f{\in}Hol({\sigma}T))$, where $Hol({\sigma}(T))$ is the space of all functions that analytic in an open neighborhoods of ${\sigma}(T)$ of T. (c) If $T^*$ is algebraically (p, k)-quasihyponormal, then generalized a-Weyl's theorem holds for f(T) for every $f{\in}Hol({\sigma}T))$. (d) If T is a (p, k)-quasihyponormal operator, then the spectral mapping theorem holds for semi-B-essential approximate point spectrum $\sigma_{SBF_+^-}(T)$, and for left Drazin spectrum ${\sigma}_{lD}(T)$ for every $f{\in}Hol({\sigma}T))$.