A CHARACTERIZATION OF LOCAL RESOLVENT SETS

HYUK HAN AND JONG-KWANG YOO

ABSTRACT. Let T be a bounded linear operator on a Banach space X. And let $\rho_T(x)$ be the local resolvent set of T at $x \in X$. Then we prove that a complex number λ belongs to $\rho_T(x)$ if and only if there is a sequence $\{x_n\}$ in X such that $x_n = (T - \lambda)x_{n+1}$ for $n = 0, 1, 2, \ldots, x_0 = x$ and $\{\|x_n\|^{\frac{1}{n}}\}$ is bounded.

1. Introduction

Let X be a Banach space over the complex plane \mathbb{C} . Let $\mathcal{L}(X)$ denote the Banach algebra of all bounded linear operators on X. For a given $T \in \mathcal{L}(X)$, let $\sigma(T)$ and $\rho(T)$ denote the spectrum and the resolvent set of T, respectively. The local resolvent set $\rho_T(x)$ of T at the point $x \in X$ is defined as the union of all open subsets U of \mathbb{C} for which there is an analytic function $f: U \to X$ which satisfies

$$(T - \lambda)f(\lambda) = x$$
 for all $\lambda \in U$.

The local spectrum $\sigma_T(x)$ of T at x is then defined as

$$\sigma_T(x) = \mathbb{C} \setminus \rho_T(x).$$

Clearly, the local resolvent set $\rho_T(x)$ is open, and the local spectrum $\sigma_T(x)$ is closed. For each $x \in X$, the function $f(\lambda) : \rho(T) \to X$ defined by

$$f(\lambda) = (T - \lambda)^{-1}x$$

is analytic on $\rho(T)$ and satisfies

$$(T - \lambda)f(\lambda) = x$$
 for all $\lambda \in \rho(T)$.

Received July 14, 2005.

2000 Mathematics Subject Classification: 47A99, 47B40.

Key words and phrases: local spectral theory.

Hence the resolvent set $\rho(T)$ is always subset of $\rho_T(x)$ and hence $\sigma_T(x)$ is always subset of $\sigma(T)$.

The analytic solutions occurring in the definition of the local resolvent set may be thought of as local extensions of the function $(T - \lambda)^{-1}x$: $\rho(T) \to X$. There is no uniqueness implied. Thus we need the following definition.

An operator $T \in L(X)$ is said to have the *single-valued extension* property, abbreviated SVEP, if for every open set $U \subseteq \mathbb{C}$, the only analytic solution $f: U \to X$ of the equation

$$(T - \lambda)f(\lambda) = 0$$
 for all $\lambda \in U$

is the zero function on U. Hence if T has the SVEP, then for each $x \in X$ there is the maximal analytic extension of $(T - \lambda)^{-1}x$ on $\rho_T(x)$.

2. The single valued extension property and local resolvent sets

Let $\sigma_p(T)$ denote the point spectrum of $T \in L(X)$.

PROPOSITION 1. Let $T \in L(X)$ be an operator which has empty interior of its point spectrum. Then T has the SVEP.

PROOF. Let $T \in L(X)$ be an operator which has empty interior of its point spectrum $\sigma_p(T)$. Suppose that T has not the SVEP. Then there is an analytic function $f: U \to X$ on an open set $U \subseteq \mathbb{C}$ with

$$(T - \lambda)f(\lambda) = 0$$
 for all $\lambda \in U$,

but f is not identically zero on U. Thus there is a $\lambda \in U$ such that $f(\lambda) \neq 0$. Then by the identity theorem there is an open neighborhood W of λ with $W \subseteq U$ and $f(\mu) \neq 0$ for all $\mu \in W$. This implies that

$$W \subseteq \sigma_p(T)$$
.

This is a contradiction. This completes the proof.

Many operators on a Banach space X have the empty interior of its point spectrum. For example, if T is a compact operator or Volterra operator or unilateral shift operator or operator which has real spectrum, then $\sigma_p(T)^0 = \emptyset$. Hence these operators have the SVEP.

Let H be a Hilbert space over the complex plane \mathbb{C} with the inner product $\langle \cdot, \cdot \rangle$. And $\mathcal{L}(H)$ denotes the C^* -algebra of bounded linear operators on a Hilbert space H. And let T^* denote the adjoint of T. The operator $T \in \mathcal{L}(H)$ is said to be *hyponormal* if its self commutator $[T^*, T] = T^*T - TT^*$ is positive, that is

$$\langle [T^*, T]x, x \rangle \geq 0,$$

or equivalently

$$||T^*x|| \le ||Tx||$$

for every $x \in H$.

Define the *joint point spectrum* of T as follow:

$$\sigma_{jp}(T) = \{\lambda \in \mathbb{C} : \text{there is a non zero } x \in H \text{ such that } (T - \lambda)x = 0 \}$$

and $(T^* - \overline{\lambda})x = 0\}.$

Then clearly $\sigma_{jp}(T) \subseteq \sigma_p(T)$. In the case of some important operator T, $\sigma_p(T) = \sigma_{jp}(T)$. In fact, if T is a hyponormal operator, then $(T - \lambda)$ is also hyponormal and hence $\|(T - \lambda)^*(x)\| \le \|(T - \lambda)(x)\|$ for all $x \in H$. Thus if T is hyponormal, then $\sigma_p(T) = \sigma_{jp}(T)$.

PROPOSITION 2. Let T be a bounded linear operator on a Hilbert space H with $\sigma_p(T) = \sigma_{jp}(T)$. Then T has the SVEP.

PROOF. Let $f:U\to H$ be an analytic function on an open set $U\subseteq\mathbb{C}$ with

$$(T - \lambda)f(\lambda) = 0$$
 for all $\lambda \in U$.

Let λ be a fixed element in U. Define the map $g: U \to \mathbb{C}$ by

$$g(\zeta) = \langle f(\lambda), f(\zeta) \rangle$$
 for all $\zeta \in U$.

Then $g: U \to \mathbb{C}$ is continuous on U. Then for every $\mu \in U$ such that $\mu \neq \lambda$, $Tf(\mu) = \mu f(\mu)$. Since $\sigma_p(T) = \sigma_{jp}(T)$, we have

$$T^*f(\mu) = \overline{\mu}f(\mu)$$
 for all $\mu \in \mathbb{C} \setminus {\lambda}$.

Therefore, we have

$$\lambda g(\mu) = \langle \lambda f(\lambda), f(\mu) \rangle$$

$$= \langle T f(\lambda), f(\mu) \rangle$$

$$= \langle f(\lambda), \overline{\mu} g(\mu) \rangle$$

$$= \mu g(\mu).$$

Since $\lambda \neq \mu$, $g(\mu) = 0$. Since $\mu \in U$ and $\mu \neq \lambda$, we have

$$g(\mu) = 0$$
 for all $\mu \in U \setminus {\lambda}$.

But then, by the continuity of g, $g(\lambda) = 0$. This implies that $f(\lambda) = 0$. Since λ is arbitrary, f is the zero function on U. This completes the proof.

COROLLARY 3. Let T be a hyponormal operator on a Hilbert space H. Then T has the SVEP.

PROPOSITION 4. Let T be a bounded linear operator on a Banach space X and let $x \in X$. Then a complex number λ belongs to $\rho_T(x)$ if and only if there is a sequence $\{x_n\}$ in X such that $x_n = (T - \lambda)x_{n+1}$ for $n = 0, 1, 2, \ldots, x_0 = x$ and $\{\|x_n\|^{\frac{1}{n}}\}$ is bounded.

PROOF. (\Rightarrow) Let $\lambda \in \rho_T(x)$. And let $x_0 = x$. Then there is an open neighborhood U of λ and there is an analytic function $f: U \to X$ such that

$$(T - \mu)f(\mu) = x_0$$
 for all $\mu \in U$.

By differentiation n-times of the analytic constant function $(T - \lambda)f(\mu) = x_0$ on U, we have

$$(T-\mu)f^{(n)}(\mu) = nf^{(n-1)}(\mu)$$

for all $\mu \in U$ and $n = 1, 2, \dots$ Let

$$x_n = \frac{1}{(n-1)!} f^{(n-1)}(\lambda), \quad n = 1, 2, \dots$$

Then we have

$$(T - \lambda)x_{n+1} = \frac{1}{n!}(T - \lambda)f^{(n)}(\lambda)$$
$$= \frac{1}{n!}nf^{(n-1)}(\lambda)$$
$$= \frac{1}{(n-1)!}f^{(n-1)}(\lambda)$$
$$= x_n$$

for all $n = 0, 1, \ldots$ Since $f: U \to X$ is analytic,

$$\limsup_{n \to \infty} \|x_n\|^{\frac{1}{n}} = \limsup_{n \to \infty} \|\frac{1}{(n-1)!} f^{(n-1)}(\lambda)\|^{\frac{1}{n}} < \infty.$$

Hence $\{\|x_n\|^{\frac{1}{n}}\}$ is bounded.

 (\Leftarrow) Let $x = x_0$. Define the function

$$g(\mu) = \sum_{n=1}^{\infty} x_n (\mu - \lambda)^{n-1}.$$

Since $\{\|x_n\|^{\frac{1}{n}}\}$ is bounded, g is analytic on $\{\mu \in \mathbb{C} : |\mu - \lambda| < M\}$, where $M = \frac{1}{\limsup \|x_n\|^{\frac{1}{n}}}$. Then we have

$$(T - \mu)g(\mu) = (T - \mu)(\sum_{n=1}^{\infty} x_n(\mu - \lambda)^{n-1})$$

$$= \sum_{n=1}^{\infty} (T - \lambda - (\mu - \lambda))x_n(\mu - \lambda)^{n-1}$$

$$= \sum_{n=1}^{\infty} (T - \lambda)x_n(\mu - \lambda)^{n-1} - \sum_{n=1}^{\infty} x_n(\mu - \lambda)^n$$

$$= \sum_{n=1}^{\infty} x_{n-1}(\mu - \lambda)^{n-1} - \sum_{n=1}^{\infty} x_n(\mu - \lambda)^n$$

$$= x_0.$$

Hence $\lambda \in \rho_T(x)$.

EXAMPLE. Let $C(\Omega)$ be the Banach algebra of all continuous complex valued functions on a compact Hausdorff space Ω endowed with pointwise operations and the supremum norm. For a given $g \in C(\Omega)$, let T be the operator of multiplication on $C(\Omega)$ by $g \in C(\Omega)$. That is,

$$(Tf)(\lambda) = g(\lambda)f(\lambda)$$
 for all $f \in C(\Omega)$.

Clearly $\sigma(T) = g(\Omega)$. We claim that $\sigma_T(f) = g(\operatorname{supp} f)$ for all $f \in C(\Omega)$, where

$$\operatorname{supp} f = \overline{\{\lambda \in \Omega : f(\lambda) \neq 0\}}$$

denotes, as usual, the *support* of the function $f \in C(\Omega)$.

To verify this, let $f \in C(\Omega)$ be given. And let $\omega \in \Omega$ with $f(\omega) \neq 0$. Then for each $k \in C(\Omega)$,

$$(T - g(\omega))k(\omega) = 0$$

Hence we have

$$(T - g(\omega))k \neq f$$
 for all $k \in C(\Omega)$.

Hence by Proposition 4, $g(\omega) \notin \rho_T(f)$. That is $g(\omega) \in \sigma_T(f)$. Therefore, we have

$$g(\{\omega \in \Omega : f(\omega) \neq 0\} \subseteq \sigma_T(f).$$

By the continuity of g, we have

$$g(\operatorname{supp} f) \subseteq \sigma_T(f)$$
.

Conversely, let $\lambda \in \mathbb{C} \setminus g(\operatorname{supp} f)$. Then there is an open neighborhood U of λ with $U \cap g(\operatorname{supp} f) = \emptyset$. Define the sequence $\{f_n\}$ by

$$f_n(\omega) = \begin{cases} \frac{f(\omega)}{(g(\omega) - \lambda)^n}, & \text{if} \quad g(\omega) \notin U \\ 0, & \text{if} \quad g(\omega) \in U. \end{cases}$$

Then clearly f_n is well defined and continuous for each $n = 1, 2, \ldots$ Let $f_0 = f$. Then we have

$$(T-\lambda)f_n = f_{n-1}$$
 for all $n = 1, 2, \dots$

And for each $n = 1, 2, \ldots$,

$$||f_n|| \le \frac{||f||}{\operatorname{dist}(\lambda, g(\operatorname{supp} f))^n},$$

where $\operatorname{dist}(\lambda, g(\operatorname{supp} f))$ is the distance from λ to the compact set $g(\operatorname{supp} f)$. Hence the sequence $\{\|f_n\|^{\frac{1}{n}}\cdot\}$ is bounded. By Proposition $4, \lambda \in \rho_T(f)$. Hence we have

$$\sigma_T(f) \subseteq g(\operatorname{supp} f)$$
.

Therefore, $\sigma_T(f) = g(\text{supp} f)$ is proved.

References

- [1] I. Colojoară and C. Foiaș, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.
- [2] I. Erdelyi and R. Lange, Spectral Decompositions on Banach Spaces, Lecture Notes in Math. 623, Springer Verlag, New York, 1977.
- [3] K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, London Mathematical Society Monographs New Series 20, Oxford Science Publications, Oxford, 2000.
- [4] K. B. Laursen and P. Vrbová, Some remarks on the surjectivity spectrum of linear operators, Czechoslovak Math. J. 39(114) (1989), 730-739.
- [5] M. Martin and M. Putinar, Lectures on Hyponormal Operators, Birkhäuser Verlag, Basel Boston Berlin, 1989.
- [6] D. Xia, Spectral Theory of Hyponormal Operators, Birkhäuser Verlag, Basel Boston Berlin, 1983.

Hyuk Han
Department of Mathematics
Seonam University
Namwon 590-711, Korea
E-mail: hyukhan@seonam.ac.kr

Jong-Kwang Yoo Department of Liberal Arts and Science Chodang University Muan 534-701, Korea E-mail: jkyoo@chodang.ac.kr