References
- P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, 2004.
- P. Aiena and O. Monsalve, The single valued extension property and the generalized Kato decomposition property, Acta Sci. Math. (Szeged) 67 (2001), no. 3-4, 791-807.
- M. Amouch and H. Zguitti, On the equivalence of Browder's and generalized Browder's theorem, Glasg. Math. J. 48 (2006), no. 1, 179-185. https://doi.org/10.1017/S0017089505002971
- S. K. Berberian, An extension of Weyl's theorem to a class of not necessarily normal operators, Michigan Math. J. 16 (1969), 273-279. https://doi.org/10.1307/mmj/1029000272
- S. K. Berberian, The Weyl spectrum of an operator, Indiana Univ. Math. J. 20 (1970), 529-544. https://doi.org/10.1512/iumj.1970.20.20044
- M. Berkani, On a class of Quasi-Fredholm operators, Integral Equations Operator Theory 34 (1999), no. 2, 244-249. https://doi.org/10.1007/BF01236475
- M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 130 (2002), no. 6, 1717-1723. https://doi.org/10.1090/S0002-9939-01-06291-8
- M. Berkani, B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Appl. 272 (2002), no. 2, 596-603. https://doi.org/10.1016/S0022-247X(02)00179-8
- M. Berkani, On the equivalence of Weyl theorem and generalized Weyl theorem, Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 1, 103-110. https://doi.org/10.1007/s10114-005-0720-4
- M. Berkani and A. Arroud, Generalized weyl's theorem and hyponormal operators, J. Aust. Math. Soc. 76 (2004), no. 2, 1-12. https://doi.org/10.1017/S1446788700008661
- M. Berkani and J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), no. 1-2, 359-376.
- M. Berkani and M. Sarih, An Atkinson-type theorem for B-Fredholm operators, Studia Math. 148 (2001), no. 3, 251-257. https://doi.org/10.4064/sm148-3-4
- L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288. https://doi.org/10.1307/mmj/1031732778
- R. E. Curto and Y. M. Han, Weyl's theorem for algebraically paranormal operators, Integral Equations Operator Theory 47 (2003), no. 3, 307-314. https://doi.org/10.1007/s00020-002-1164-1
- H. R. Dowson, Spectral Theory of Linear Operators, Academic Press, London, 1978.
- B. P. Duggal and S. V. Djordjevic, Generalized Weyl's theorem for a class of operators satisfying a norm condition, Proc. Roy. Irish Acad. Sect. A 104A (2004), no. 1, 271-277.
- B. P. Duggal and S. V. Djordjevic, Generalised Weyl's theorem for a class of operators satisfying a norm condition, Math. Proc. R. Ir. Acad. 104A (2004), no. 1, 75-81.
- J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), no. 1, 61-69. https://doi.org/10.2140/pjm.1975.58.61
- R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, New York, 1988.
- S. H. Lee and W. Y. Lee, On Weyl's theorem II, Math. Japon. 43 (1996), no. 3, 549-553.
- A.-H. Kim and S. U. Yoo, Weyl's theorem for isoloid and reguloid operators, Commun. Korean Math. Soc. 14 (1999), no. 1, 179-188.
- I. H. Kim, On (p, k)-quasihyponormal operators, Math. Inequal. Appl. 7 (2004), no. 4, 629-638.
- J. J. Koliha, Isolated spectral points, Proc. Amer. Math. Soc. 124 (1996), no. 11, 3417-3424. https://doi.org/10.1090/S0002-9939-96-03449-1
- M. Lahrouz and M. Zohry, Weyl type theorems and the approximate point spectrum, Irish Math. Soc. Bull. 55 (2005), 41-51.
- K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152 (1992), no. 2, 323-336. https://doi.org/10.2140/pjm.1992.152.323
- S. Mecheri, Weyl's theorem for algebraically (p, k)-quasihyponormal operators, Georgian Math. J. 13 (2006), no. 2, 307-313.
- V. Rakocevic, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), no. 10, 915-919.
- V. Rakocevic, Semi-Fredholm operators with finite ascent or descent and perturbation, Proc. Amer. Math. Soc. 122 (1995), no. 12, 3823-3825.
- V. Rakocevic, Semi-Browder operators and perturbations, Studia Math. 122 (1997), no. 2, 131-137. https://doi.org/10.4064/sm-122-2-131-137
- V. Rakocevic, Operators Obeying a-Weyl's theorem, Publ. Math. Debrecen 55 (1999), no. 3-4, 283-298.
- M. H. M. Rashid, M. S. M. Noorani, and A. S. Saari, Weyl's type theorems for quasi-Class A operators, J. Math. Stat. 4 (2008), no. 2, 70-74. https://doi.org/10.3844/jmssp.2008.70.74
- M. H. M. Rashid, M. S. M. Noorani, and A. S. Saari, Generalized Weyl's theorem for log-hyponormal, Malaysian J. Math. Soc. 2 (2008), no. 1, 73-82.
- C. Schmoeger, On operators T such that Weyl's theorem holds for f(T), Extracta Math. 13 (1998), no. 1, 27-33.
- K. Tanahashi, A. Uchiyama, and M. Cho, Isolated point of spectrum of (p, k)-quasihyponormal operators, Linear Algebra Appl. 382 (2004), no. 1, 221-229. https://doi.org/10.1016/j.laa.2003.12.021
- A. E. Taylor, Theorems on ascent, descent, nullity and defect of linear operators, Math. Ann. 163 (1966), 18-49. https://doi.org/10.1007/BF02052483
- H. Weyl, Uber beschrankte quadratische Formen, deren Differenze vollsteting ist, Rend. Circ. Math. Palermo 27 (1909), 373-392. https://doi.org/10.1007/BF03019655
- H. Zguitti, A note on generalized Weyl's theorem, J. Math. Anal. Appl. 316 (2006), no. 1, 373-381. https://doi.org/10.1016/j.jmaa.2005.04.057
Cited by
- Properties (t) and (gt) for Bounded Linear Operators vol.11, pp.2, 2014, https://doi.org/10.1007/s00009-013-0313-x
- Polaroid Operators with Svep and Perturbations of Property (Gaw) vol.0, pp.0, 2015, https://doi.org/10.1515/aicu-2015-0013