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STABILITY OF A TWO-STRAIN EPIDEMIC MODEL WITH

AN AGE STRUCTURE AND MUTATION†
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Abstract. A two-strain epidemic model with an age structure mutation
and varying population is studied. By means of the spectrum theory of
bounded linear operator in functional analysis, the reproductive numbers
according to the strains, which associates with the growth rate λ∗ of total
population size are obtained. The asymptotic stability of the steady states
are obtained under some sufficient conditions.
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1. Introduction

Increase in disease virulence accelerates the transmission of infectious between
hosts. Simultaneously it reduces the longevity of infection within hosts. Change
in virulence can alter host-pathogen dynamics, significantly. Mathematical mod-
elling can aid that process by providing insight into the mechanisms that sus-
tain microorganisms genetic diversity. Competitive exclusion and coexistence
of strains in gonorrhea and other sexually transmitted diseases are discussed
in [1, 2, 11]. Some of those are super-infection[3, 4, 5], coinfection [6], cross-
immunity [7], density-dependent host mortality [8]. Because of their paramount
importance in biology and public health, multi-strain models attract significant
attention. Results of these research efforts have been summarized in three top-
ical reviews [12, 14, 15]. Pathogen mutations that circumvent the protective
effects of a patient’s immune response are common in infections diseases such
as measles, hepatitis B, HIV, West Nile virus, and influenza. Mutation [9] is
an important nature of the multi-strains. Mutation has impact on the complex
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nature of the strain epidemic model. In our paper, we consider the mutation of
two strains in an epidemic model.

Host age structure is often an important factor which affects the dynamics of
disease transmission. The age-structured epidemic models also have enriched the
knowledge of epidemic models. In addition, the age-structured epidemic models
are generally be described by the first-order partial differential equations with
nonlocal boundary conditions, and it is very difficult to theoretically analyze
the dynamical behaviors of the models. Therefore, it is necessary to study age-
structured epidemic model with multiple strains. To our knowledge, there are
few papers to consider age-structured epidemic models with multiple strains.
Li et al [17] discuss two trains model with superinfection. They obtained the
reproductive numbers according to the strains and proved the local asymptotical
stability of the boundary equilibria. They also give the existence of the endemic
equilibrium using the fixed theory. However, they didn’t give the explicit formula
of the endemic equilibria. Most existing studies fucus on the total population is
a constant. In reality, this assumption is not realistic and has some limits. In
this paper, we mainly study an age-structured epidemic model with mutation
and varying population, and focus on the local behaviors of the model.

This paper is organized as follows: Sec.2 introduces age-structure two strains
epidemic model with mutation. In Sec.3, we obtain existence of the positive so-
lution. In Sec.4, existence of the steady states are studied, In Sec.5, we analysis
the spectral of the linear operator at steady states. Sec.5 gives locally asymp-
totical stability of the steady states. In Sec.6, we conclude the main contents in
this paper and give some discussions.

2. The model formulation

In this section, we introduce an age-structured two-strain model with muta-
tion. The total population P (t, a) is divided into four classes: susceptible S(t, a),
infected with strain one I(t, a), infected with strain two J(t, a) and recovered
R(t, a). Susceptible individuals can become the infected by strain one and move
to the class I(t, a), or infected by strain two and move to the class J(t, a). We
assume that those infected with strain one can mutate into strain two. This
process is referred as mutation. We take the transmission rate λ1(t, a) in the
separable intercohort constitutive form for the force of infection generated by
I(t, a)

λ1(t, a) = k(a)

∫ a+

0
h1(a)I(t, a)da∫ a+

0
P (t, a)da

where h1(a) is the age-specific infectiousness for strain one, and k(a) is the
age-specific susceptibility of susceptible individuals. We note that in essence
what we have assumed is that the age-specific contact rate of individuals age
a with individuals age b is separable: c(a, b) = c1(a)c2(b). The assumption
for separability of the contact rates is important part of our results. Without
it different techniques may be necessary to deal with the problem. The term
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c1(a) can be absorbed in the coefficient k(a), while the term c2(b) is absorbed
into the function h1(b). Similarly, we take λ2(a, t) in the separable intercohort
constitutive form for the force of infection generated by J(a, t)

λ2(t, a) = k(a)

∫ a+

0
h2(a)J(t, a)da∫ a+

0
P (t, a)da

where h2(a) is the age-specific infectiousness for strain two. In this article we
assume that the susceptibilities for the two strains are the same and given by
k(a) but our results can be easily and trivially extended to the case when they are
different, that is k1(a) 6= k2(a). The functions hi(a), k(a) have compact support
and satisfy

k(a), hi(a) ∈ L∞(0,+∞), k(a), hi(a) ≥ 0, on a ∈ (0, a+), i = 1, 2
and k(a), hi(a) = 0, for a > a+.

In addition, the other parameters satisfy

γi(a), α(a), β(a) ∈ L∞(0,+∞), i = 1, 2,

µ(a) ∈ L1
loc(0, a

+), and
∫ a+

0
µ(a)da = ∞,

µ(a)π(a) is a.e. boundary at (0, a+).

where π(a) = e−
∫ a
0

µ(τ)dτ . All the infected individuals can cured and remove
into the removed classes R(t, a) at rates γ1(a) and γ2(a), respectively. Then the
joint dynamics of the age-structured epidemiological model for the transmission
of TB can be written as





∂S(t, a)

∂t
+

∂S(t, a)

∂a
= −λ1(t, a)S(t, a)− λ2(t, a)S(t, a)− µ(a)S(t, a),

∂I(t, a)

∂t
+

∂I(t, a)

∂a
= λ1(t, a)S(t, a)− µ(a)I(t, a)− γ1(a)I(t, a)− α(a),

∂J(t, a)

∂t
+

∂J(t, a)

∂a
= λ2(t, a)S(t, a) + α(a)I(t, a)− µ(a)J(t, a)− γ2(a)I(t, a),

∂R(t, a)

∂t
+

∂R(t, a)

∂a
= γ1(a)I(t, a) + γ2(a)J(t, a)− µ(a)R(t, a),

S(t, 0) =

∫ a+

0
β(a)P (t, a)da, I(t, 0) = J(t, 0) = R(t, 0) = 0,

S(0, a) = S0(a) ≥ 0, I(0, a) = I0(a) ≥ 0, J(0, a) = I0(a) ≥ 0, R(0, a) = R0(a) ≥ 0.

(2.1)

where β(a) is the age-specific per capita birth rate. Summing the equations of
(2.1) we obtain the following problem for the total population density P (t, a) =
S(t, a) + I(t, a) + J(t, a) +R(t, a).





∂P (t, a)

∂t
+

∂P (t, a)

∂a
= −µ(a)P (t, a),

P (t, 0) =

∫ a+

0

β(a)P (t, a)da, P (0, a) = P0(a) ≥ 0.

(2.2)
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3. Existence of positive solutions

Consider the Banach space

X = L1(0, a+)× L1(0, a+)× L1(0, a+)× L1(0, a+)

endowed with the norm

‖f‖ =

4∑

i=1

‖fi‖ for f(a) = (f1(a), f2(a), f3(a), f4(a)) ∈ X,

where ‖.‖ is the norm of L1(0, a+). The state space of system (2.1) is

Γ = {(S, I, J, P ) | 0 ≤ S + I + J ≤ P, S ≥ 0, I ≥ 0, J ≥ 0} .
where X+ = L1

+(0, a
+) × L1

+(0, a
+) × L1

+(0, a
+) × L1

+(0, a
+), and L1

+(0, a
+)

denotes the positive cone of L1(0, a+). We define the following notations

H(t) =

∫ a+

0

h1(a)I(t, a)da+

∫ a+

0

h2(a)J(t, a)da

and

H1(t) =

∫ a+

0

h1(a)I(t, a)da,H2(t) =

∫ a+

0

h2(a)J(t, a)da.

Let A : D(A) → X be a linear operator defined by

A =




− ∂
∂a

− µa 0 0 0
0 − ∂

∂a
− µ(a)− α(a)− γ1(a) 0 0

0 α(a) − ∂
∂a

− µ(a)− γ2(a) 0
0 0 0 − ∂

∂a
− µ(a)




and the domain D(A) is given as

D(A) =

{
f
∣∣∣ fi(.) is absolutely continuous,

f1(0) = f4(0) =

∫ a+

0

β(a)f4(a)da, f2(0) = f3(0)

}
.

And as same time we define nonlinear operator F : X → X as

F(f)(a) =




−k(a)f1(a)
H1(f)
N (f) − k(a)f1(a)

H2(f)
N (f)

f1(a)
H1(f)
N (f)

f1(a)
H2(f)
N (f)

0


 ,

where

H1 : X → R,H1(f) =

∫ a+

0

h1(a)f2(a)da,

H2 : X → R,H2(f) =

∫ a+

0

h2(a)f3(a)da,
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N : X → R,N (f) =

∫ a+

0

f4(a)da.

F(0) = (0, 0, 0, 0)T . We define the functional ϕ :

< ϕ, f >:= N (f) =

∫ a+

0

f4(a)da.

Since µ(a)π(a) is almost boundary on (0, a+), ∀f ∈ X, < ϕ,Af > is a boundary
operator on X i.e ϕ ∈ D(A∗), where A∗ is adjoint operator of A. It is easy to
know that Hi, i = 1, 2 are bounded linear operators on L1(0, a+).

Let u(t) = (S(t, ·), I(t, ·), J(t, ·), P (t, ·)). Thus, we can rewrite the system as
an abstract Cauchy problem





du(t)

dt
= Au(t) + F(u(t)),

u(0) = u0 ∈ X
(3.1)

where u0 = (S0(a), I0(a), J0(a), P0(a))
T .

For A and F , we have the following results.

Lemma 3.1. The operator A generates a C0 semigroup etA and the space Γ is
positively invariant with respect to the semiflow etA.

Lemma 3.2. The operator F is continuous and Fréchet differentiable on X.

By Lemma 3.1 and 3.2 and following Inaba[13] and Webb[16], we have the
following theorem.

Theorem 3.3. For each u0 ∈ X+, there are a maximal interval of existence
[0, t0) and a unique continuous mild solution u(t, u0) ∈ X+, t ∈ [0, t0) for (3.1)
such that

u(t) = etAu0 +

∫ t

0

eA(t−τ)F(u(τ))dτ.

The operator B : D(B) ⊂ X → X is defined by

B = A+ F ′(E∗), D(B) = D(A).

It is easy to see that B is a boundary perturbation on A. We assume E(t) is a
solution of (3.1), and define

w(t) = E(t)− E∗ ∈ kerφ,

where

kerφ = {z ∈ X| < φ, z >= 0}.
In the following, we define another linear operator S on X

Sz = Bz− < φ, Bz > E∗, D(S) = D(B).

Note that eSt is a semigroup generated by S and Xφ = kerφ, and Sφ is the linear
operator restricted on Xφ. According to [10], we have the following lemmas.
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Lemma 3.4. If ‖eSφt‖ ≤ Meωt, ω < λ∗, where λ∗ is a characteristic value of
nonlinear homogeneous operator A+ F , thus

lim
t→∞

w(t) = 0.

Lemma 3.5. If the semigroup generated by Sφ is finally compact and

sup
λ∈σ(B)

Reλ 6= λ∗,

thus

lim
t→∞

w(t) = 0.

4. Existence of steady state

In this section, we discuss existence of the persistent solutions of (2.1). Denote

S(t, a) = eλtS∗(a), I(t, a) = eλtI∗(a), J(t, a) = eλtJ∗(a), P (t, a) = eλtP ∗(a),

which satisfies the following equations




λS∗(a) +
dS∗(a)
da

= −µ(a)S∗(a)− k(a)
H∗

1

N∗ S
∗(a)− k(a)

H∗
2

N∗ S
∗(a),

λI∗(a) +
dI∗(a)
da

= −(µ(a) + α(a) + γ1(a))I
∗(a) + k(a)

H∗
1

N∗ S
∗(a),

λJ∗(a) +
dJ∗(a)
da

= −(µ(a) + γ2(a))J
∗(a) + α(a)I∗(a) + k(a)

H∗
2

N∗ S
∗(a),

λP ∗(a) +
dP ∗(a)

da
= −µ(a)P ∗(a),

S∗(0) = P ∗(0) =
∫ a+

0

β(a)P ∗(a)da, I∗(0) = J∗(0) = 0.

(4.1)

where H∗
1 =

∫ a+

0

h1(a)I
∗(a)da,H∗

2 =

∫ a+

0

h2(a)J
∗(a)da,N∗ =

∫ a+

0

P ∗(a)da.

In fact, the existence of persistent solutions of (4.1) is equivalent to the existence
of persistent solutions of (2.1). Solving the fourth equation of (4.1), we get

P ∗(a) = b0e
−λ∗aπ(a),

where π(a) = e−
∫ a
0

µ(a)da. λ∗ is unique real root of the following characteristic
equation ∫ a+

0

β(a)e−λaπ(a)da = 1.

and then

N∗ =

∫ a+

0

P ∗(a)da = 1, b0

∫ a+

0

π(a)e−λ∗ada = 1.

Solving the other three equations of (4.1),
(1) we obtain disease-free steady state E0(S

0, I0, J0, P 0), where

S0(a) = P 0(a) = P ∗(a), I0 = J0 = 0,H∗
1 = H∗

2 = 0;
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(2) we get strain two dominated steady state E1(S
∗
1 , I

∗
1 , J

∗
1 , P

∗
1 ), where

I∗1 = 0,

S∗
1 = b0π(a)e

−λ∗ae−H∗
21

∫ a
0

k(τ)dτ ,

J∗
1 = b0H

∗
21π(a)e

−λ∗a
∫ a

0

k(σ)e−
∫ a
σ

γ2(τ)dτe−H∗
21

∫ σ
0

k(τ)dτdσ.

(4.2)

Substituting J∗
1 into H∗

21, it leads to

H∗
21 = H∗

21b0

∫ a+

0

h2(a)π(a)e
−λ∗a

∫ a

0

k(σ)e−
∫ a
σ γ2(τ)dτe−H∗

21

∫ σ
0 k(τ)dτdσda. (4.3)

Both dividing H∗
21 of (4.3), it is easy to get the following equation

R2(H
∗
21) = b0

∫ a+

0

h2(a)π(a)e
−λ∗a

∫ a

0

k(σ)e−
∫ a
σ γ2(τ)dτe−H∗

21

∫ σ
0 k(τ)dτdσda

= 1.
(4.4)

It is easy to know that R2(H
∗
21) → 0, as H∗

21 → +∞; and R2(H
∗
21) → +∞, as

H∗
21 → −∞. Therefore, if R2(0) > 1, (4.4) has a unique positive solution H∗

21;
(3) we have endemic steady state E∗(S∗, I∗, J∗, P∗), where

S∗ =b0π(a)e
−λ∗ae−H∗ ∫ a

0
k(τ)dτ,

I∗ =b0H
∗
1π(a)e

−λ∗a
∫ a

0

k(σ)e−
∫ a
σ
(α(τ)+γ1(τ))dτe−H∗ ∫ σ

0
k(σ)dσdσ,

J∗ =b0H
∗
2π(a)e

−λ∗a
∫ a

0

k(σ)e−
∫ a
σ

γ2(τ)dτe−H∗ ∫ σ
0

k(σ)dσdσ + b0H
∗
1π(a)e

−λ∗a

∫ a

0

k(σ)e−H∗ ∫ σ
0

k(τ)dτ

∫ a

σ

α(ξ)e−
∫ a
ξ

γ2(τ)dτe−
∫ ξ
σ
(α(τ)+γ1(τ))dτdξdσ.

Substituting I∗ into H∗
1 , it leads to

H∗
1 = b0H

∗
1

∫ a+

0

h1(a)π(a)e
−λ∗a

∫ a

0

k(σ)e−
∫ a
σ (α(τ)+γ1(τ))dτe−H∗ ∫ σ

0 k(τ)dτdσda, (4.5)

and substituting J∗ into H∗
2 , it leads to

H∗
2 =b0H

∗
2

∫ a+

0

h2(a)π(a)e
−λ∗a

∫ a

0

k(σ)e−
∫ a
σ

γ2(τ)dτe−H∗ ∫ σ
0

k(τ)dτdσda

+ b0H
∗
1

∫ a+

0

h2(a)π(a)e
−λ∗a

∫ a

0

k(σ)e−H∗ ∫ σ
0

k(τ)dτ

∫ a

σ

α(ξ)

e−
∫ σ
ξ

γ2(τ)dτe−
∫ ξ
σ
(α(τ)+γ1(τ))dτdξdσda.

(4.6)

Let

R1(H
∗) = b0

∫ a+

0

h1(a)π(a)e
−λ∗a

∫ a

0

k(σ)e−
∫ a
σ
(α(τ)+γ1(τ))dτe−H∗ ∫ σ

0
k(τ)dτdσda,

R2(H
∗) = b0

∫ a+

0

h2(a)π(a)e
−λ∗a

∫ a

0

k(σ)e−
∫ a
σ

γ2(τ)dτe−H∗ ∫ σ
0

k(τ)dτdσda.
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Thus (4.5) and (4.6) are equivalent to the following equation
∣∣∣∣
R1(H

∗)− 1 0
M(H∗) R2(H

∗)− 1

∣∣∣∣ = 0 (4.7)

where

M(H∗) =− b0

∫ a+

0

h2(a)π(a)e
−λ∗a

∫ a

0

k(σ)e−H∗ ∫ σ
0

k(τ)dτ

∫ a

σ

α(ξ)e−
∫ σ
ξ

γ2(τ)dτe−
∫ ξ
σ
(α(τ)+γ1(τ))dτdξdσda.

From (4.7), we get

Ri(H
∗) = 1, i = 1, 2.

Note that lim
H∗→+∞

Ri(H
∗) = 0, lim

H∗→−∞
Ri(H

∗) = 0, i = 1, 2. Therefore, if Ri0 =

Ri(0) > 1, i = 1, 2, it has a positive solution H∗. Concluding above the results,
we get the following theorem.

Theorem 4.1. If Ri0 = Ri(0) < 1, i = 1, 2 (3.1) has disease-free state steady
E0 = (S0, I0, J0, P 0) compared unique λ∗.
If R20 > 1, and R10 < 1, (3.1) has two steady states, one is disease-free steady
state E0 and the other is strain two dominated steady state E∗

1 = (S∗
1 , 0, J

∗
1 , P

∗
1 ).

If R10 > 1 and R20 > 1, (3.1) has two steady states, one is disease-free equilib-
rium E0 and the other is endemic steady state E∗ = (S∗, I∗, J∗, P ∗).

5. Analysis of linear operators at the steady states

In this section, we mainly analysis linear operators at the steady states. We
can change the problem into analysis the spectral of linearize operator at the
steady states in (2.1). B denotes the linear operator A + F ′(E0) at E0; B1

denotes the linear operator A + F ′(E∗
1 ) at E1; B2 denotes the linear operator

A+ F ′(E∗) at E∗.
Firstly, we analysis the spectral of B. We have to find the nontrivial solution

of

(B − λ)v = 0

where v = (s, i, j, p)T , i.e.





ds

da
= −λs− µ(a)s− x̂k(a)S0(a)− ŷk(a)S0(a),

di

da
= −λi− µ(a)− α(a)i− γ1(a)i+ x̂k(a)S0(a),

dj

da
= −λj − µ(a)j − γ2(a)j + α(a)i+ ŷk(a)S0(a),

dp

da
= −λp− µ(a)p

(5.1)
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with the boundary conditions

s(0) = p(0) =

∫ a+

0

β(a)p(a)da, i(0) = j(0) = 0, x̂ =

∫ a+

0

h1(a)i(a)da,

ŷ =

∫ a+

0

h2(a)j(a)da, n̂ =

∫ a+

0

p(a)da, ẑ = x̂+ ŷ.

(5.2)

Denote λ∗ is the real solution of the characteristic equation (5.3),
∫ a+

0

β(a)e−λaπ(a)da = 1. (5.3)

αj , j = 1, 2, · · · are the complex roots of the characteristic equation (5.3).
Now we discuss two following cases:

(1) If λ = λ∗ or λ = αj for some j, then the fourth equation of (5.1) with (5.2)
has nontrivial solution p, so system (5.1) has nontrivial solution (p, 0, 0, p) at
least, and λ∗, αj are the characteristic value of B0.
(2) If λ 6= λ∗ and λ 6= αj , j = 1, 2, · · · , then the fourth equation of (5.1) with
(5.2) has only trivial solution, i.e p(a) = 0, that is s(0) = p(0) = 0, n̂ = 0.
Solving the first three equations of (5.1), we get

s(a) =− b0π(a)ẑ

∫ a

0

k(σ)e−λ(a−σ)e−λ∗σdσ,

i(a) =b0π(a)x̂

∫ a

0

k(σ)e−λ(a−σ)e−λ∗σe−
∫ a
σ
(α(τ)+γ1(τ))dτdσ,

j(a) =b0π(a)ŷ

∫ a

0

k(σ)e−λ(a−σ)e−λ∗σe−
∫ a
σ

γ2(τ)dτdσ + b0π(a)x̂

∫ a

0

α(σ)e−
∫ a
σ

γ2(τ)dτ

∫ σ

0

k(ξ)eλ(ξ−a)e−λ∗ξe−
∫ σ
ξ
(α(τ)+γ1(τ))dτdξdσ.

(5.4)

Changing the integral order of j(a), we obtain

j(a) =b0π(a)ŷ

∫ a

0

k(σ)e−λ(a−σ)e−λ∗σe−
∫ a
σ

γ2(τ)dτdσ + b0π(a)x̂

∫ a

0

k(σ)eλ(σ−a)e−λ∗σ
∫ a

σ

α(η)e−
∫ a
η

γ2(τ)dτe−
∫ η
σ
(α(τ)+γ1(τ)dτdηdσ.

(5.5)

Substituting (5.5) into (5.2), and dividing x̂, we obtain
(
b0

∫ a+

0

h1(a)π(a)

∫ a

0

k(σ)e−λ(a−σ)e−λ∗σe−
∫ a
σ
(α(τ)+γ1(τ))dτdσda− 1

)
x̂ = 0

x̂b0

∫ a+

0

h2(a)π(a)

∫ a

0

k(σ)e−λ(a−σ)e−λ∗σe−
∫ a
σ

γ2(τ)dτdσda+

(
b0

∫ a+

0

h2(a)π(a)

∫ a

0

k(σ)e−λ(a−σ)e−λ∗σe−
∫ a
σ

γ2(τ)dτdσda− 1

)
ŷ = 0,
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that is

F1(λ) = b0

∫ a+

0

h1(a)π(a)

∫ a

0

k(σ)e−λ(a−σ)e−λ∗σe−
∫ a
σ (α(τ)+γ1(τ))dτdσda = 1,

F2(λ) = b0

∫ a+

0

h2(a)π(a)

∫ a

0

k(σ)e−λ(a−σ)e−λ∗σe−
∫ a
σ γ2(τ)dτdσda = 1.

(5.6)

It is easy to see all the solutions of (5.6) are characteristic values of B0. Note

that F1(λ) and F2(λ) respectively have unique real root λ̃i and a series complex
roots α̃ij , j = 1, 2, · · · . In addition, F ′

i (λ) < 0, i = 1, 2,

lim
λ→+∞

Fi(λ) = 0

and
Fi(0) = Ri0.

Therefore, if Ri0 > 1, and λ̃i > λ∗; otherwise, λ̃i < λ∗.

Theorem 5.1. The spectral of B0 only consists of λ∗, αij , λ̃i, α̃ij , and

(1) if R10 < 1 and R20 < 1, then Reα̃ij < λ∗, and Reα̃ij < λ̃i < λ∗;
(2) if Ri0 > 1, i = 1, 2, then λ̃i > λ∗.

Secondly, we discuss the spectral of B1, when R10 < 1 and R20 > 1. We want
to find nontrivial solution of

(B1 − λ)v = 0

where v = (s, 0, j, p)T , i.e.




ds

da
= −λs− µ(a)s− x̂k(a)S∗

1 (a)− k(a)H∗
21s− (ŷ −H∗

21n̂)k(a)S
∗
1 ,

di

da
= −λi− µ(a)− α(a)i− γ1(a)i+ x̂k(a)S∗

1 (a),

dj

da
= −λj − µ(a)j − γ2(a)j + α(a)i+ k(a)H∗

21s+ (ŷ −H∗
21n̂)k(a)S

∗
1 (a),

dp

da
= −λp− µ(a)p

(5.7)

with the boundary conditions

s(0) = p(0) =

∫ a+

0

β(a)p(a)da, i(0) = j(0) = 0, x̂ =

∫ a+

0

h1(a)i(a)da,

ŷ =

∫ a+

0

h2(a)j(a)da, n̂ =

∫ a+

0

p(a)da, ẑ = x̂+ ŷ.

(5.8)

Denote λ∗ is the real solution of the characteristic equation (5.3), αij , j = 1, 2, · · ·
are the complex roots of the characteristic equation (5.3).

Now we discuss the two following cases:
(1) If λ = λ∗ or λi = αij for some j, then the fourth equation of (5.7) with
(5.8) has nontrivial solution p, so system (5.7) has nontrivial solution (p, 0, 0, p)
at least, and λ∗, αij are the characteristic values of B1.
(2) If λ 6= λ∗ and λ 6= αij , j = 1, 2, · · · , then the fourth equation of (5.7) with
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(5.8) has only trivial solution, i.e p(a) = 0, that is s(0) = p(0) = 0, n̂ = 0.
Solving the first three equations, we get

s(a) = −b0π(a)ẑe
−H∗

21

∫ a

0
k(τ)dτ ∫ a

0
k(σ)e−λ(a−σ)e−λ∗σdσ,

i(a) = b0π(a)x̂

∫ a

0
k(σ)e−λ(a−σ)e−λ∗σe−

∫ a
σ (α(τ)+γ1(τ))dτe−H∗

21

∫ σ
0 k(τ)dτdσ,

j(a) = b0π(a)ŷ

∫ a

0
k(σ)e−λ(a−σ)e−λ∗σe−

∫ a
σ γ2(τ)dτ e−H∗

21

∫ σ
0 k(τ)dτdσ

− b0π(a)ŷH
∗
21

∫ a

0
k(η)e

− ∫ a
η γ2(τ)dτ e−H∗

21

∫ η
0 k(τ)dτ

∫ η

0
k(σ)e−λ(a−σ)e−λ∗σdσdη

− b0π(a)x̂H
∗
21

∫ a

0
k(η)e

− ∫ a
η γ2(τ)dτ e−H∗

21

∫ η
0 k(τ)dτ

∫ η

0
k(σ)e−λ(a−σ)e−λ∗σdσdη

+ b0π(a)x̂

∫ a

0
α(σ)e−

∫ a
σ γ2(τ)dτ

∫ σ

0
k(ξ)eλ(ξ−a)e−λ∗ξe−

∫ σ
ξ (α(τ)+γ1(τ))dτ

e−H∗
21

∫ ξ
0 k(τ)dτdξdσ.

(5.9)

Changing the integral order of j(a), we obtain

j(a) =b0π(a)ŷ

∫ a

0

k(σ)e−λ(a−σ)e−λ∗σe−
∫ a
σ γ2(τ)dτe−H∗

21

∫ σ
0 k(τ)dτdσ − b0π(a)

x̂H∗
21

∫ a

0

k(η)e−
∫ a
η γ2(τ)dτe−H∗

21

∫ η
0 k(τ)dτ

∫ η

0

k(σ)e−λ(a−σ)e−λ∗σdσdη

+ b0x̂π(a)H(λ)

(5.10)

where

H(λ) =−H∗
21

∫ a

0

k(η)e−
∫ a
η

γ2(τ)dτe−H∗
21

∫ η
0

k(τ)dτ

∫ η

0

k(σ)e−λ(a−σ)e−λ∗σdσdη

+

∫ a

0

α(σ)e−
∫ a
σ

γ2(τ)dτ

∫ σ

0

k(ξ)eλ(ξ−a)e−λ∗ξe−
∫ σ
ξ
(α(τ)+γ1(τ))dτ

e−H∗
21

∫ ξ
0
k(τ)dτdξdσ.

Substitute (5.10) into (5.9), we obtain
(
b0

∫ a+

0

h1(a)π(a)

∫ a

0

k(σ)e−λ(a−σ)e−λ∗σe−
∫ a
σ
(α(τ)+γ1(τ))dτe−H∗

21

∫ σ
0

k(τ)dτ

dσda− 1

)
x̂ = 0,

x̂b0

∫ a+

0

h2(a)π(a)

∫ a

0

H(λ)dσda+

(
b0

∫ a+

0

h2(a)π(a)

∫ a

0

k(σ)e−λ(a−σ)e−λ∗σ

{
e−

∫ a
σ

γ2(τ)dτe−H∗
21

∫ σ
0

k(τ)dτdσda−H∗
21

∫ a

σ

k(η)e−
∫ a
η

k(η)γ2(τ)dτe−H∗
21

∫ a
0

k(τ)dτ

dηdσ
}
da− 1

)
ŷ = 0,
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that is

F1(λ) =b0

∫ a+

0

h1(a)π(a)

∫ a

0

k(σ)e−λ(a−σ)e−λ∗σe−
∫ a
σ (α(τ)+γ1(τ))dτ

e−H∗
21

∫ σ
0 k(τ)dτdσda = 1,

F2(λ) =b0

∫ a+

0

h2(a)π(a)

∫ a

0

k(σ)e−λ(a−σ)e−λ∗σ[e−H∗
21

∫ σ
0 k(τ)dτe−

∫ a
σ γ2(τ)dτ

dσda−H∗
21

∫ a

σ

k(η)e−
∫ a
η γ2(τ)dτe−H∗

21

∫ a
0 k(τ)dτdηdσ]da = 1.

(5.11)

We assume
J∗
1 (a

+)

P ∗(a+)
≤ e−

∫ a+

0
γ2(τ)dτ .

We straightly calculate and obtain the following formula

e−
∫ a
σ

γ2(τ)dτe−H∗
21

∫ a
σ

k(τ)dτ −H∗
21

∫ a

σ

k(η)e−
∫ a
η

γ2(τ)dτe−H∗
21

∫ η
0

k(τ)dτdη

≥
∫ σ

0

γ2(η)e
− ∫ a

η
γ2(τ)dτe−H∗

21

∫ η
0

k(τ)dτdη ≥ 0

(5.12)

and

e
−H∗

12

∫
k(τ)dτ

≥
∫ a

0

γ2(σ)e
− ∫ a

σ
γ2(τ)dτe−H∗

12

∫ σ
0

k(τ)dτ . (5.13)

From (5.12) and (5.13), then we have

F2(λ
∗) < b0

∫ a+

0

h2(a)π(a)e
−λ∗a

∫ a

0

k(σ)e−H∗
21

∫ σ
0 k(τ)dτe−

∫ a
σ γ2(τ)dτdσda = R2(H

∗
21) = 1.

It is easy to see all the solutions of (5.11) are characteristic values of B1, and

Reα̃2j < λ̃2 < λ∗.
Note that

F1(λ
∗) = b0

∫ a+

0

h1(a)π(a)

∫ a

0

k(σ)e−λ∗ae−
∫ a
σ (α(τ)+γ1(τ))dτe−H∗

21

∫ σ
0 k(τ)dτdσda = 1.

Hence, F1(λ) has unique real root λ̃1 and a series complex roots α̃1j , j =
1, 2, · · · . Since F ′

1(λ) < 0,

lim
λ→+∞

F1(λ) = 0

and

F1(0) = R10.

Therefore, if R10 > 1, and then λ̃1 > λ∗; otherwise, λ̃1 < λ∗.

Theorem 5.2. The spectral of B1 consists of λ∗, αij , λ̃i, α̃ij , if R10 < 1, R20 > 1,

and
J∗
1 (a

+)
P∗(a+) ≤ e−

∫ a+

0
γ2(τ)dτ , then Reαij < λ∗, and Reα̃ij < λ̃i < λ∗.
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Finally, we analysis the spectral of B2. We have to find nontrivial solution of

(B2 − λ)v = 0

where v = (s, i, j, p)T , i.e.




ds

da
= −λs− µ(a)s− (x̂−H∗

1 n̂)k(a)S
∗(a)− (ŷ −H∗

2 n̂)k(a)S
∗(a)

− k(a)H∗s,

di

da
= −λi− µ(a)− α(a)i− γ1(a)i+ (x̂−H∗

1 n̂)k(a)S
∗(a) + k(a)H∗

1 s,

dj

da
= −λj − µ(a)j − γ2(a)j + α(a)i+ (ŷ −H∗

2 n̂)k(a)S
∗(a) + k(a)H∗

2 s,

dp

da
= −λp− µ(a)p,

(5.14)

with the boundary conditions

s(0) = p(0) =

∫ a+

0

β(a)p(a)da, i(0) = j(0) = 0, x̂ =

∫ a+

0

h1(a)i(a)da,

ŷ =

∫ a+

0

h2(a)j(a)da, n̂ =

∫ a+

0

p(a)da, ẑ = x̂+ ŷ.

(5.15)

We use the same method and obtain the following characteristic equation

F3(λ)G2(λ)− F4(λ)G1(λ) = 0 (5.16)

where

F3(λ) =b0

∫ a+

0

h1(a)π(a)

∫ a

0

k(σ)eλ(σ−a)e−λ∗σ[e−
∫ a
σ γ1(τ)+α(τ)dτe−H∗ ∫ a

0 k(τ)dτ

−H∗
1

∫ a

σ

k(η)e−
∫ σ
η (γ1(a)+α(a))dτe−H∗ ∫ η

0 k(τ)dτdη]dσda− 1,

F4(λ) =− b0H
∗
1

∫ a+

0

h1(a)π(a)

∫ a

0

k(η)e−
∫ σ
η (γ1(a)+α(a))dτe−H∗ ∫ η

0 k(τ)dτ

∫ η

0

k(σ)eλ(σ−a)e−λ∗σdσdη,

G1(λ) =b0

∫ a+

0

h2(a)π(a)

∫ a

0

{
∫ a

0

α(ξ)e−
∫ a
ξ γ2(τ)dτ

∫ ξ

0

k(σ)eλ(σ−a)e−λ∗σ

[e−
∫ ξ
σ γ1(τ)+α(τ)dτe−H∗ ∫ σ

0 k(τ)dτ −H∗
1

∫ σ

0

k(η)e−
∫ σ
η (γ1(a)+α(a))dτ

e−H∗ ∫ η
0 k(τ)dτ ]dηdσdξ} −H∗

2

∫ a

0

k(η)e−
∫ a
η γ2(τ)dτe−H∗ ∫ η

0 k(τ)dτdηda,

G2(λ) =b0

∫ a+

0

h2(a)π(a)

∫ a

0

{
∫ a

0

α(σ)eλ(σ−a)e−λ∗σ[e−
∫ a
σ γ2(τ)dτe−H∗ ∫ σ

0 k(τ)dτ

−H∗
2

∫ a

σ

k(η)e−
∫ σ
η γ2(τ)dτe−H∗ ∫ η

0 k(τ)dτ ]dηdσ −H∗
1

∫ σ

0

α(ξ)e−
∫ σ
ξ γ2(τ)dτ

∫ ξ

0

k(η)e−
∫ ξ
η γ1(τ)+α(τ)dτe−H∗ ∫ η

0 k(τ)dτ

∫ η

0

k(σ)eλ(σ−a)e−λ∗σdσdηdξ.
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Theorem 5.3. If R10 > 1, and R20 > 1, the spectral of B2 consists of λ∗, αij , λ̃i,
α̃ij , and the relations of the characteristic roots is determined by (5.16).

6. The stability of the steady state

In section 5, we analysis the spectral of linear operator at the steady states.
According to the reference [10] and Lemma 3.4 , 3.5, we just only prove that
the semigroups generated by S0φ, S1φ and Sφ are finally compact. In fact, we
just only prove the semigroup by S2φ is finally compact. The other situations
are the special case of this situation. We define H∗ = H∗

1 + H∗
2 . Note that

S2φ = B2− < φ,B2 > E∗, we rewrite S2φ = A+ T, where

A =




− ∂
∂a − µ(a) − H∗k(a) 0 0 0

H∗
1 k(a) − ∂

∂a − µ(a) − α(a) − γ1(a) 0 0
H∗

2 k(a) α(a) − ∂
∂a − µ(a) − γ2(a) 0

0 0 0 − ∂
∂a − µ(a)




and

(Tv)(a) =




−(x̂−H∗
1 n̂)k(a)S

∗(a)− (ŷ −H∗
2 n̂)k(a)S

∗(a)− < ϕ,Bv > S∗(a)
(x̂−H∗

1 n̂)k(a)S
∗(a)− < ϕ,Bv > I∗(a)

(x̂−H∗
2 n̂)k(a)S

∗(a)− < ϕ,Bv > J∗(a)
− < ϕ,Bv > P ∗(a)


 .

Since the dimension of T is finite, T is a compact operator. We just prove the
semigroup generated by A is finally compact. We note that the domains of A
and A are consistent. When H∗ = 0, the operators A and A are also consistent.
We consider the solution of the following system





∂f1(a, t)

∂t
+

∂f1(a, t)

∂a
= −µ(a)f1(a, t)−H∗k(a)f1(a, t),

∂f2(a, t)

∂t
+

∂f2(a, t)

∂a
= H∗

1k(a)f1(a, t)− µ(a)f2(a, t)− α(a)f2(a, t)

− γ1(a)f2(a, t),

∂f3(a, t)

∂t
+

∂f3(a, t)

∂a
= α(a)f2(a, t) +H∗

2k(a)f2(a, t)− µ(a)f3(a, t)

− γ2(a)f3(a, t),

∂f4(a, t)

∂t
+

∂f4(a, t)

∂a
= −µ(a)f4(a, t)

(6.1)

with the boundary conditions

f1(0, t) = f4(0, t) =

∫ a+

0

β(a)f4(a, t)da,

f2(0, t) = f3(0, t) = 0.



Stability of a two-strain epidemic model 197

Denote B(t) =

∫ a+

0

β(a)f4(a, t) the new born at time t. And we obtain the

semigroup generated by A

(eAtf0)(a) =




B(t− a)π(a)e−H∗ ∫ a
0 k(τ)dτ

H∗
1B(t− a)π(a)

∫ a

0
k(a)e−H∗ ∫ σ

0 k(τ)dτe−
∫ a
σ (γ1(τ)+α(τ))dτdσ

L
B(t− a)π(a)


 (6.2)

where

L =H∗
2B(t− a)π(a)

∫ a

0

k(σ)e−H∗ ∫ σ
0

k(τ)dτe−
∫ a
σ

γ2(τ)dτ +H∗
1B(t− a)π(a)

∫ a

0

α(ρ)e−
∫ σ
ρ

γ2(τ)dτ

∫ ρ

0

k(σ)e−H∗ ∫ σ
0

k(τ)dτe−
∫ ρ
σ
(α(τ)+γ1(τ))dτdσdρ.

Note that B have two following natures:

(1) |B(t)| ≤ β̂eβ̂t‖f4‖L1
π
.

(2) When t > 2a+,

∫ a+

0

|B(t− a+ h)− B(t− a)|da ≤ O1(h)‖f0
4 ‖X .

Due to the compact of the Frećhet-Kolmogorov in L1, we must check the
following lemma.

Lemma 6.1.

∫ a+

0

|xi(a)− xi(a− h)|da → 0, as h → 0.

In the following we check every term in (6.2) to satisfy the Lemma 6.1. Firstly,
when h is small enough, we check the first term in (6.2).

∫ a+

0

|B(t− a)π(a)e−H∗ ∫ a
0

k(τ)dτ −B(t− a− h)π(a− h)e−H∗ ∫ a−h
0

k(τ)dτ |da

≤
∫ a

0

|B(t− a)||π(a)e−H∗ ∫ a
0

k(τ)dτ − e−H∗ ∫ a−h
0

k(τ)dτda+

∫ a

0

|B(t− a)|

|π(a)− π(a− h)|e−H∗ ∫ a−h
0

k(τ)dτda+

∫ a

0

|B(t− a)− B(t− a− h)|π(a− h)

e−H∗ ∫ a−h
0

k(τ)dτda

≤(H∗k̂h+ µ̂h)

∫ a+

0

|B(t− a)|da+

∫ a+

0

|B(t− a)− B(t− a− h)|da

≤O2(h)‖f0
X‖X

where O2(h) → 0, as h → 0.
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Secondly, we check the second term when h is small enough.

∫ a+

0

|H∗
1B(t− a)π(a)

∫ a

0

k(σ)e−H∗ ∫ σ
0

k(τ)dτe−
∫ a
σ
(γ1(τ)+α(τ))dτ −

∫ a+

0

|H∗
1

B(t− a+ h)π(a− h)

∫ a−h

0

k(σ)e−H∗ ∫ σ
0

k(τ)dτe−
∫ a−h
σ

(γ1(τ)+α(τ))|dτ |dσda

≤H∗
∫ a+

0

|B(t− a)π(a)||
∫ a

0

k(σ)e−H∗ ∫ σ
0

k(τ)dτe−
∫ a
σ
(γ1(τ)+α(τ))dτ

−
∫ a−h

0

k(σ)e−H∗ ∫ σ
0

k(τ)dτe−
∫ a
σ
(γ1(τ)+α(τ))dτ |dσda+H∗

1

∫ a+

0

B(t− a)

|π(a)− π(a− h)|
∫ a−h

0

k(σ)e−H∗ ∫ σ
0

k(τ)dτe−
∫ a
σ
(γ1(τ)+α(τ))dτ |dσda

+H∗
1

∫ a+

0

|B(t− a)− B(t− a+ h)|π(a− h)

∫ a−h

0

k(σ)e−H∗ ∫ σ
0

k(τ)dτ

e−
∫ a
σ
(γ1(τ)+α(τ))dτ |dσda

≤H∗
1 (γ̂1 + α̂+ k̂)h

∫ a+

0

|B(t− a)|da+ k̂H∗
1 µ̂a

+

∫ a+

0

|B(t− a)|da

+ k̂H∗
1a

+|B(t− a)− B(t− a+ h)|da
≤O3(h)‖f0

X‖X
where O3(h) → 0, as h → 0.

Finally we can prove that the following term satisfies the Lemma 6.1.

H∗
1

∫ a+

0

|B(t− a)π(a)

∫ a

0

α(ρ)e−
∫ a
ρ

γ2(τ)dτ

∫ ρ

0

k(σ)e−
∫ ρ
σ
(α(τ)+γ1(τ))dτ

e−H∗
1

∫ σ
0

k(τ)dτdσdρ−H∗
1

∫ a+

0

B(t− a)π(a)

∫ a

0

α(ρ)e−
∫ a
ρ

γ2(τ)dτ

∫ ρ

0

k(σ)e−H∗
1

∫ σ
0

k(τ)dτe−
∫ ρ
σ
(α(τ)+γ1(τ)dτ)dσdρ|da

≤H∗
1 (α̂(e

ˆγ2a+
+ γ̂2)a

+h+ µ̂α̂k̂a+)h

∫ a+

0

|B(t− a)|da+ µ̂α̂k̂a+

|B(t− a)− B(t− a+ h)|da
≤O4(h)‖f0

X‖X
where O4(h) → 0, as h → 0.

Due to the compact of the Frećhet-Kolmogorov in L1 and Lemma 6.1, the
semigroup generated by A is finally compact when t > 2a+. Therefore, we obtain
the following theorem.
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Theorem 6.2. (1) If R0 = max{R10, R20} < 1, and then disease-free steady
state E0 is locally asymptotically stable.

(2) If R10 < 1, R20 > 1, and
J∗
1 (a

+)
P∗(a+) ≤ e−

∫ a+

0
γ2(τ)dτ , then the dominated strain

two steady state E∗
1 is locally asymptotically stable.

(3) If R10 > 1, and R20 > 1, the local stability of the endemic steady state E∗ is
determined by (5.16).

7. Conclusion

In this paper we formulate an age-structured epidemiological model for the
disease transmission of two strain with mutation, then the mathematical analysis
of this model was performed. We obtain the explicit expression of the basic
reproduction number according to the strains, and prove that the disease-free
steady state is locally asymptotical stable if R0 = max{R10, R20} < 1, in this
case, the disease always dies out; then we prove that dominated strain two
steady state which is locally asymptotically stable if R10 < 1, R20 > 1 and
J∗
1 (a

+)
P∗(a+) ≤ e−

∫ a+

0
γ2(τ)dτ . We also obtain the existence of the endemic steady

state and local stability determined by (5.16). Compared the ODE model, the
reproductive number is more realistic and has more biological meaning.

In future, there are some problems that will be solved. The global stability of
the steady states, or whether there are some kind of bifurcations for the model
or not, are still open. If the input is impulsive birth, what results will occur.
The simulations of the age structure models are still to be resolve. Furthermore,
what effect will occur, if we introduce the delay in our model.
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