• Title/Summary/Keyword: b-metric

Search Result 374, Processing Time 0.024 seconds

Objective Image Quality Metric for Block-Based DCT Image Coder-using Structural Distortion Measurement (구조적 왜곡특성 측정을 이용한 블록기반 DCT 영상 부호화기의 객관적 화질평가)

  • Jeong, Tae Yun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.434-434
    • /
    • 2003
  • This paper proposes a new quantitative and objective image quality metric which is essential to verify the performance of block-based DCT image coding The proposed metric considers not only global distortion of coded image such as spatial frequency sensitivity and channel masking using HVS based multi-channel model, but also structural distortions caused block-based coding. The experimental results show a strong correlation between propose(B metric and subjective metric.

SOME FIXED POINT RESULTS ON DOUBLE CONTROLLED CONE METRIC SPACES

  • A. Herminau Jothy;P. S. Srinivasan;Laxmi Rathour;R. Theivaraman;S. Thenmozhi
    • Korean Journal of Mathematics
    • /
    • v.32 no.2
    • /
    • pp.329-348
    • /
    • 2024
  • In this text, we investigate some fixed point results in double-controlled cone metric spaces using several contraction mappings such as the B-contraction, the Hardy-Rogers contraction, and so on. Additionally, we prove the same fixed point results by using rational type contraction mappings, which were discussed by the authors Dass. B. K and Gupta. S. Also, a few examples are included to illustrate the results. Finally, we discuss some applications that support our main results in the field of applied mathematics.

SOME COMMON FIXED POINT THEOREMS WITH CONVERSE COMMUTING MAPPINGS IN BICOMPLEX-VALUED PROBABILISTIC METRIC SPACE

  • Sarmila Bhattacharyya;Tanmay Biswas;Chinmay Biswas
    • The Pure and Applied Mathematics
    • /
    • v.31 no.3
    • /
    • pp.299-310
    • /
    • 2024
  • The probabilistic metric space as one of the important generalizations of metric space, was introduced by Menger [16] in 1942. Later, Choi et al. [6] initiated the notion of bicomplex-valued metric spaces (bi-CVMS). Recently, Bhattacharyya et al. [3] linked the concept of bicomplex-valued metric spaces and menger spaces, and initiated menger space with bicomplex-valued metric. Here, in this paper, we have taken probabilistic metric space with bicomplex-valued metric, i.e., bicomplexvalued probabilistic metric space and proved some common fixed point theorems using converse commuting mappings in this space.

ON GENERALIZED SHEN'S SQUARE METRIC

  • Amr Soleiman;Salah Gomaa Elgendi
    • Korean Journal of Mathematics
    • /
    • v.32 no.3
    • /
    • pp.467-484
    • /
    • 2024
  • In this paper, following the pullback approach to global Finsler geometry, we investigate a coordinate-free study of Shen square metric in a more general manner. Precisely, for a Finsler metric (M, L) admitting a concurrent π-vector field, we study some geometric objects associated with ${\widetilde{L}}(x, y)={\frac{(L+{\mathfrak{B}}^2)}L}$ in terms of the objects of L, where ${\mathfrak{B}}$ is the associated 1-form. For example, we find the geodesic spray, Barthel connection and Berwald connection of ${\widetilde{L}}(x,y)$. Moreover, we calculate the curvature of the Barthel connection of ${\tilde{L}}$. We characterize the non-degeneracy of the metric tensor of ${\widetilde{L}}(x,y)$.

SOME ĆIRIC TYPE FIXED POINT RESULTS IN NON-ARCHIMEDEAN MODULAR METRIC SPACES

  • Hosseini, Hoda;Gordji, Majid Eshaghi
    • The Pure and Applied Mathematics
    • /
    • v.26 no.4
    • /
    • pp.215-231
    • /
    • 2019
  • In this paper, we establish some ĆIRIC type fixed point theorems in α-complete and orbitally T-complete non-Archimedean modular metric spaces. Meanwhile, we present an illustrative example to emphasis the realized improvements. These obtained results extend and improve certain well known results in the literature.

COMMON FIXED POINT THEOREM FOR MULTIMAPS ON MENGER L-FUZZY METRIC SPACE

  • Deshpande, Bhavana;Chouhan, Suresh
    • The Pure and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.11-23
    • /
    • 2013
  • In this paper, we obtain a common fixed point theorem for multivalued mappings in a complete Menger $\mathcal{L}$-fuzzy metric space. $\mathcal{L}$-fuzzy metric space is a generalization of fuzzy metric spaces and intuitionistic fuzzy metric spaces. We extend and generalize the results of Kubiaczyk and Sharma [24], Sharma, Kutukcu and Rathore [34].

QUASI CONTACT METRIC MANIFOLDS WITH KILLING CHARACTERISTIC VECTOR FIELDS

  • Bae, Jihong;Jang, Yeongjae;Park, JeongHyeong;Sekigawa, Kouei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1299-1306
    • /
    • 2020
  • An almost contact metric manifold is called a quasi contact metric manifold if the corresponding almost Hermitian cone is a quasi Kähler manifold, which was introduced by Y. Tashiro [9] as a contact O*-manifold. In this paper, we show that a quasi contact metric manifold with Killing characteristic vector field is a K-contact manifold. This provides an extension of the definition of K-contact manifold.

GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD WITH A QUARTER-SYMMETRIC METRIC CONNECTION

  • Jin, Dae Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.515-531
    • /
    • 2018
  • Jin studied lightlike hypersurfaces of an indefinite Kaehler manifold [6, 8] or indefinite trans-Sasakian manifold [7] with a quarter-symmetric metric connection. Jin also studied generic lightlike submanifolds of an indefinite trans-Sasakian manifold with a quarter-symmetric metric connection [10]. We study generic lightlike submanifolds of an indefinite Kaehler manifold with a quarter-symmetric metric connection.

ON SEMI-INVARIANT SUBMANIFOLDS OF A NEARLY KENMOTSU MANIFOLD WITH A QUARTER SYMMETRIC NON-METRIC CONNECTION

  • Ahmad, Mobin;Jun, Jae-Bok
    • The Pure and Applied Mathematics
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • We define a quarter symmetric non-metric connection in a nearly Ken-motsu manifold and we study semi-invariant submanifolds of a nearly Kenmotsu manifold endowed with a quarter symmetric non-metric connection. Moreover, we discuss the integrability of the distributions on semi-invariant submanifolds of a nearly Kenmotsu manifold with a quarter symmetric non-metric connection.

THE CHERN SECTIONAL CURVATURE OF A HERMITIAN MANIFOLD

  • Pandeng Cao;Hongjun Li
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.897-906
    • /
    • 2024
  • On a Hermitian manifold, the Chern connection can induce a metric connection on the background Riemannian manifold. We call the sectional curvature of the metric connection induced by the Chern connection the Chern sectional curvature of this Hermitian manifold. First, we derive expression of the Chern sectional curvature in local complex coordinates. As an application, we find that a Hermitian metric is Kähler if the Riemann sectional curvature and the Chern sectional curvature coincide. As subsequent results, Ricci curvature and scalar curvature of the metric connection induced by the Chern connection are obtained.