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THE CHERN SECTIONAL CURVATURE OF A HERMITIAN

MANIFOLD

Pandeng Cao and Hongjun Li

Abstract. On a Hermitian manifold, the Chern connection can induce a

metric connection on the background Riemannian manifold. We call the
sectional curvature of the metric connection induced by the Chern con-

nection the Chern sectional curvature of this Hermitian manifold. First,
we derive expression of the Chern sectional curvature in local complex co-

ordinates. As an application, we find that a Hermitian metric is Kähler

if the Riemann sectional curvature and the Chern sectional curvature co-
incide. As subsequent results, Ricci curvature and scalar curvature of the

metric connection induced by the Chern connection are obtained.

1. Introduction

Suppose (M,h) is an n-dimensional Hermitian manifold, and g = Reh is
the background Riemannian metric associated to h. Let z = (z1, . . . , zn) and
x = (x1, . . . , x2n) be local complex and real coordinates of a point p ∈ M , where
zα = xα+

√
−1xn+α, 1 ≤ α ≤ n. In this paper, we assume that lowercase Greek

indices run from 1 to n and lowercase Latin indices run from 1 to 2n. In local
coordinates, we denote by h = hαβ̄(z)dz

αdz̄β and g = Reh = gij(x)dx
idxj .

Let ω =
√
−1hαβ̄(z)dz

α ∧ dz̄β be the Kähler form associated to the Hermitian
metric h. If the Kähler form ω is closed, i.e., dω = 0, then we call h a Kähler
metric.

Let us denote by D and ∇ the Chern connection and the Levi-Civita (or
Riemannian) connection, respectively. The curvature operators of the Chern
connection and the Levi-Civita connection are denoted by R and R, respec-
tively. It is well known that h is Kähler if and only if the Chern connection
D coincides with the Levi-Civita ∇ (refer to [4, 10, 14], etc.). Hence R is the
linear extension of R over C under Kähler hypothesis.

We define a bundle isomorphism o : TM → T 1,0M by

uo =
1

2
(u−

√
−1Ju), ∀u ∈ TM,
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where J is the complex structure on M . Let u, v ∈ TM , we set ξ = uo, η =
vo ∈ T 1,0M . If h is Kähler, then

(1) R(Ju, u, v, Jv) = 2R
(
ξ, ξ̄, η, η̄

)
,

R(u, v, v, u)

=
1

2

[
R
(
ξ, η̄, η, ξ̄

)
+R

(
η, ξ̄, ξ, η̄

)
−R (ξ, η̄, ξ, η̄)−R

(
η, ξ̄, η, ξ̄

)]
.

(2)

The first formula can be referred to [14], and the second formula can be referred
to [9, 11]. Especially, if we take v = u in (1) or take v = Ju in (2), then (1)
and (2) become

(3) R(Ju, u, u, Ju) = 2R(ξ, ξ̄, ξ, ξ̄)

under Kähler hypothesis.
In this paper, we will give a geometric characterization of the right hand

side in (2) when h is non-Kähler. In local coordinates, the right hand side in
(2) can be written as

1

2
Rαβ̄γδ̄

(
ξαη̄β − ηαξ̄β

)(
ηγ ξ̄δ − ξγ η̄δ

)
,

where Rαβ̄γδ̄ = R
(

∂
∂zα ,

∂
∂z̄β ,

∂
∂zγ ,

∂
∂z̄δ

)
. Under the bundle isomorphism o, any

Hermitian connection on T 1,0M induces a metric connection on the Riemann-
ian manifold (M, g) [4]. A connection is metric if it is compatible with the
background Riemannian metric g = Reh [4]. When no confusion can rise, we
still denote by D the metric connection induced by the Chern connection D
under the bundle isomorphism o. We find that

1

2
Rαβ̄γδ̄

(
ξαη̄β − ηαξ̄β

)(
ηγ ξ̄δ − ξγ η̄δ

)
(
hαβ̄ξ

αξ̄β
)
·
(
hγδ̄η

γ η̄δ
)
− 1

4

[
hαβ̄

(
ξαη̄β + ηαξ̄β

)]2
is just the sectional curvature of the metric connection induced by the Chern
connection D under the bundle isomorphism o, and we call it the Chern sec-
tional curvature of (M,h).

Theorem 1.1. Let (M,h) be a Hermitian manifold with the background Rie-
mannian metric g = Reh. Suppose D is the metric connection induced by
the Chern connection under the bundle isomorphism o. For arbitrary u =
ui ∂

∂xi , v = vi ∂
∂xi ∈ TM , we have

(4) g
(
(D2u)(v, u), v

)
=

1

2
Rαβ̄γδ̄

(
ξαη̄β − ηαξ̄β

)(
ηγ ξ̄δ − ξγ η̄δ

)
,

where ξ = uo and η = vo. Especially,

(5) g
(
(D2u)(Ju, u), Ju

)
= 2Rαβ̄γδ̄ξ

αξ̄βξγ ξ̄δ.
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From (4) in Theorem 1.1, we can see

g
(
(D2u)(v, u), v

)
= g

(
(D2v)(u, v), u

)
.

Recently, Li and Qiu [6] proved that a Hermitian manifold such that (3) is
Kähler. Hence, (5) in Theorem 1.1 and the main result in [6] can imply the
following corollary.

Corollary 1.2. Let (M,h) be a Hermitian manifold such that the Riemann
sectional curvature and the Chern sectional curvature coincide. Then h is a
Kähler metric.

When h is not Kähler, there are four Ricci curvatures and two scalar curva-
tures of the Chern connection D, which are respectively denoted by

RicRicRic
(1)
D =

√
−1R

(1)

αβ̄
dzα ∧ dz̄β with R

(1)

αβ̄
= hδ̄γRγδ̄αβ̄ ,

RicRicRic
(2)
D =

√
−1R

(2)

αβ̄
dzα ∧ dz̄β with R

(2)

αβ̄
= hδ̄γRαβ̄γδ̄,

RicRicRic
(3)
D =

√
−1R

(3)

αβ̄
dzα ∧ dz̄β with R

(3)

αβ̄
= hδ̄γRγβ̄αδ̄,

RicRicRic
(4)
D =

√
−1R

(4)

αβ̄
dzα ∧ dz̄β with R

(4)

αβ̄
= hδ̄γRαδ̄γβ̄ ,

sss
(1)
D = hβ̄αR

(1)

αβ̄
, sss

(2)
D = hβ̄αR

(3)

αβ̄
.

We can also define the Ricci curvature of the induced metric connection D.
Suppose {ei}2ni=1 is an orthonormal frame with respect to the background

Riemannian metric g. We define the Ricci curvature RicRicRicD of the induced
metric connection D by

(6) RicRicRicD(u, v) =

2n∑
i=1

g
(
(D2u)(ei, v), ei

)
, u, v ∈ TM.

We denote by

(7) Rij =

2n∑
k=1

g

((
D2 ∂

∂xi

)(
ek,

∂

∂xj

)
, ek

)
the Ricci curvature tensor of the induced metric connection D. But we find
that Rij ̸= Rji, and Rij = Rji if and only if the conformal invariant bαβ̄ = 0.
The definition of bαβ̄ can be seen in Section 2. By using Westlake’s result [12],
we can see Rij = Rji if (M,h) is a conformally Kähler manifold.

The scalar curvature sssD of the induced metric connection D is defined by

(8) sssD =

2n∑
i,j=1

g
(
(D2ej)(ei, ej), ei

)
.

We also derive expression of sssD in local complex coordinates, and find that sssD
is equal to four times of the second Chern scalar curvature sss

(2)
D .
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2. The Chern sectional curvature

The Chern connection D is the unique connection on the holomorphic tan-
gent bundle T 1,0M , which is compatible with the Hermitian metric h and the
complex structure J . We denote by

θ = (θαβ ) =
(
Γα
β;γdz

γ
)
=

(
hλ̄α

∂hβλ̄

∂zγ
dzγ
)

the n × n matrix of connection 1-forms. The curvature operator R of D is
defined by

(9) R(ξ, η̄, ζ, χ̄) = h
((
DζDχ̄ −Dχ̄Dζ −D[ζ,χ̄]

)
ξ, η̄
)
, ∀ξ, η, ζ, χ ∈ T 1,0M,

where [ , ] is the Lie bracket. We call

(10) Rαβ̄γδ̄ = R

(
∂

∂zα
,

∂

∂z̄β
,

∂

∂zγ
,

∂

∂z̄δ

)
= −

∂2hαβ̄

∂zγ∂z̄δ
+

∂hαλ̄

∂zγ
hλ̄κ

∂hκβ̄

∂z̄δ

the holomorphic sectional curvature tensor of D. Ulteriorly, the holomorphic
sectional curvature is defined by

(11) HSC(ξ) =
R
(
ξ, ξ̄, ξ, ξ̄

)
h (ξ, ξ)

2 , ∀ξ ∈ T 1,0M.

We still denote by D the metric connection on the Riemannian manifold
(M, g), which is induced by the Chern connection D under the bundle isomor-
phism o. Then

(12)
D

∂

∂xα
=

1

2

(
θβα + θ̄βα

)
⊗ ∂

∂xβ
−

√
−1

2

(
θβα − θ̄βα

)
⊗ ∂

∂xβ+n
,

D
∂

∂xα+n
=

√
−1

2

(
θβα − θ̄βα

)
⊗ ∂

∂xβ
+

1

2

(
θβα + θ̄βα

)
⊗ ∂

∂xβ+n
.

For a general Hermitian manifold (M,h), the induced metric connection D is
compatible with the background Riemannian metric g, but not torsion free.

Definition. Let (M,h) be a Hermitian manifold. We call

KD(u, v) =
g((D2u)(v, u), v)

g(u, u)g(v, v)− g(u, v)2
(13)

the Chern sectional curvature of the 2-plane Π(u, v) spanned by two linearly
independent tangent vectors u = ui ∂

∂xi , v = vi ∂
∂xi ∈ TM .

The Levi-Civita connection∇ is the unique connection on the tangent bundle
TM , which is torsion free and compatible with the background Riemannian
metric g = Reh. Let us denote by

φk
i = γk

ijdx
j

the connection 1-forms of the Levi-Civita connection ∇, where

γk
ij =

1

2
gkl
(
∂gil
∂xj

+
∂gjl
∂xi

− ∂gij
∂xl

)
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is the connection coefficient of ∇. The curvature operator R of ∇ is defined by

(14) R(u, v, w, y) = g
((
∇u∇v −∇v∇u −∇[u,v]

)
w, y

)
, ∀u, v, w, y ∈ TM.

The Riemann sectional curvature on the 2-plane Π(u, v) is defined by

(15) K∇(u, v) =
R(u, v, v, u)

g(u, u)g(v, v)− g(u, v)2
.

We call Π(u, Ju) a holomorphic plane section [14].
If (M,h) is a Kähler manifold, then the induced metric connection D and

the Levi-Civita connection ∇ coincide, thus KD(u, v) = K∇(u, v).
Now if we extend the background Riemannian metric g linearly over C to

the complexified tangent bundle TCM = TM ⊗ C = T 1,0M ⊕ T 0,1M , then

g

(
∂

∂zα
,

∂

∂zβ

)
= g

(
∂

∂z̄α
,

∂

∂z̄β

)
= 0,

g

(
∂

∂zα
,

∂

∂z̄β

)
= g

(
∂

∂z̄α
,

∂

∂zβ

)
=

1

2
hαβ̄ .

Hence

(16) h (ξ, η̄) = 2g (ξ, η̄) , ∀ξ, η ∈ T 1,0M.

Next we give an expression of the Chern sectional curvature in local complex
coordinates.

Proof of Theorem 1.1 We denote by D ∂
∂xi = θ̃ji

∂
∂xj and θ̃ = (θ̃ji ). It follows

from (12) that

(17) θ̃ = Fdiag
{
θ, θ̄
}
F−1,

where F =

(
I I√
−1I −

√
−1I

)
, F−1 =

1

2

(
I −

√
−1I

I
√
−1I

)
is the inverse of

F , I is the n×n identity matrix, diag
{
θ, θ̄
}
=

(
θ 0
0 θ̄

)
. In order to simplify

the calculation process, we introduce the following notations. Set

∂

∂x
=

(
∂

∂x1
, . . . ,

∂

∂x2n

)
,

∂

∂z
=

(
∂

∂z1
, . . . ,

∂

∂zn

)
,

∂

∂z̄
=

(
∂

∂z̄1
, . . . ,

∂

∂z̄n

)
,

then
∂

∂x
=

(
∂

∂z
,
∂

∂z̄

)
F t,

where F t means the transpose of F . We still denote by At the transpose of a
vector A. For any u = ui ∂

∂xi ∈ TM , ξ = uo = ξα ∂
∂zα ∈ T 1,0M , we set

uuu = (u1, . . . , u2n), ξξξ = (ξ1, . . . , ξn),

then

uuu = (ξξξ, ξ̄ξξ)F−1.
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By a straightforward computation, we have

D2u =uj
(
dθ̃ij − θ̃kj ∧ θ̃ik

)
⊗ ∂

∂xi

=uuu
(
dθ̃ − θ̃ ∧ θ̃

)
⊗
(

∂

∂x

)t

=(ξξξ, ξ̄ξξ)diag
{
dθ − θ ∧ θ, dθ̄ − θ̄ ∧ θ̄

}
⊗

( (
∂
∂z

)t(
∂
∂z̄

)t
)

=ξξξ
(
∂̄θ
)
⊗
(

∂

∂z

)t

+ ξ̄ξξ
(
∂θ̄
)
⊗
(

∂

∂z̄

)t

= ξα
(
∂̄θµα

)
⊗ ∂

∂zµ
+ ξ̄β

(
∂θ̄µβ

)
⊗ ∂

∂z̄µ

= ξα
(
Rµ

αγδ̄
dzγ ∧ dz̄δ

)
⊗ ∂

∂zµ
− ξ̄β

(
Rµ

βδγ̄dz
γ ∧ dz̄δ

)
⊗ ∂

∂z̄µ
,

where d = ∂ + ∂̄ is the exterior differentiation. Hence(
D2u

)
(v, w) =

(
ηγ ζ̄δ − ζγ η̄δ

)(
ξαRµ

αγδ̄

∂

∂zµ
− ξ̄βRµ

βδγ̄

∂

∂z̄µ

)
,

(18) g
((
D2u

)
(v, w), y

)
=
1

2
Rαβ̄γδ̄

(
ξαχ̄β − χαξ̄β

)(
ηγ ζ̄δ − ζγ η̄δ

)
,

where w, y ∈ TM , ζ = wo, χ = yo ∈ T 1,0M . Especially, we can obtain (4) by
taking w = u and y = v in (18). Note that

(Ju)o =
1

2

(
Ju−

√
−1J2u

)
=

√
−1

2

(
u−

√
−1Ju

)
= J(uo).

In order to prove (5), we only replace v and η in (4) with Ju and
√
−1v,

respectively. □

According to (4) in Theorem 1.1, we have

(19) KD(u, v) =

1

2
Rαβ̄γδ̄

(
ξαη̄β − ηαξ̄β

)(
ηγ ξ̄δ − ξγ η̄δ

)
(
hαβ̄ξ

αξ̄β
)
·
(
hγδ̄η

γ η̄δ
)
− 1

4

[
hαβ̄

(
ξαη̄β + ηαξ̄β

)]2 .
It follows from the above formula that

KD(u, v) = KD(v, u).

Remark 2.1. By (18), we have

(20) g
((
D2u

)
(Jw,w), Ju

)
= 2R (uo, uo, wo, wo) .

Remark 2.2. By (18), it is clear that

g
((
D2u

)
(v, w), y

)
= g

((
D2u

)
(Jv, Jw), y

)
= g

((
D2Ju

)
(v, w), Jy

)
,

g
((
D2u

)
(v, w), y

)
= −g

((
D2y

)
(v, w), u

)
= −g

((
D2u

)
(w, v), y

)
.



THE CHERN SECTIONAL CURVATURE OF A HERMITIAN MANIFOLD 903

But we can not expect the following formula

g
((
D2u

)
(v, w), y

)
= g

((
D2v

)
(u, y), w

)
always holds for arbitrary u, v, w, y ∈ TM .

As an application, we can extend Lu’s result [8] of Kähler manifolds with
non-negative (or non-positive) Riemann sectional curvatures on Kähler-like
manifolds with non-negative (or non-positive) Chern sectional curvature. Yang
and Zheng [13] defined Kähler-like manifolds, which are classes of non-Kähler
manifolds.

Definition ([13]). A Hermitian metric h is called Kähler-like, if its holomor-
phic sectional curvature tensor satisfies Rαβ̄γδ̄ = Rγβ̄αδ̄ for all α, β, γ, δ =
1, 2, . . . , n.

By using the same method as that in [8], we have the following result without
details.

Proposition 2.3. Let (M,h) be a Kähler-like manifold with non-negative
(resp. non-positive) Chern sectional curvature. Then

(21)
∣∣R (ξ, ξ̄, η, η̄)∣∣2 ≤ R

(
ξ, ξ̄, ξ, ξ̄

)
R (η, η̄, η, η̄) .

Proposition 2.4. For arbitrary u = ui ∂
∂xi , w = wi ∂

∂xi ∈ TM , we have

(22) RicRicRicD(u,w) = R
(4)

αδ̄
ξαζ̄δ +R

(3)

αδ̄
ζαξ̄δ,

where ξ = uo, ζ = wo.

Proof. For any lowercase Greek index α, we denote by α∗ = α + n. By (18),
we have

g

((
D2u

)( ∂

∂xκ
, w

)
,

∂

∂xλ

)
=Re

(
Rαλ̄κδ̄ξ

αζ̄δ −Rαλ̄γκ̄ξ
αζγ

)
,

g

((
D2u

)( ∂

∂xκ
, w

)
,

∂

∂xλ∗

)
=Im

(
Rαλ̄κδ̄ξ

αζ̄δ −Rαλ̄γκ̄ξ
αζγ

)
,

g

((
D2u

)( ∂

∂xκ∗ , w

)
,

∂

∂xλ

)
= − Im

(
Rαλ̄κδ̄ξ

αζ̄δ +Rαλ̄γκ̄ξ
αζγ

)
,

g

((
D2u

)( ∂

∂xκ∗ , w

)
,

∂

∂xλ∗

)
=Re

(
Rαλ̄κδ̄ξ

αζ̄δ +Rαλ̄γκ̄ξ
αζγ

)
.

Set L = (Lκλ̄)1≤κ,λ≤n = L1 +
√
−1L2, where Lκλ̄ = Rαλ̄κδ̄ξ

αζ̄δ, L1 =

ReL and L2 = ImL. Set K = (Kκλ)1≤κ,λ≤n = K1 +
√
−1K2, where Lκλ =

Rαλ̄γκ̄ξ
αζγ , K1 = ReK and K2 = ImK. Being similar to the formula (2.18)

in [7], we can write as(
L1 −K1 L2 −K2

−L2 −K2 L1 +K1

)
=Fdiag

{
L, L̄

}
F−1 − 1

2
diag {I,−I}Fdiag

{
K, K̄

}
F tdiag {I,−I} .
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Denote by G = (gij) and H = (hαβ̄), then

G−1 = Fdiag
{
H−1, H̄−1

}
F−1.

A direct computation shows that

tr

[
G−1

(
L1 −K1 L2 −K2

−L2 −K2 L1 +K1

)]
=tr

(
H−1L

)
+ tr

(
H̄−1L̄

)
=hλ̄κRαλ̄κδ̄ξ

αζ̄δ + hλ̄κRαλ̄κδ̄ξ
αζ̄δ,

where tr ( ) means the trace of a square matrix. Hence

RicRicRicD(u,w) = gklg

((
D2u

)( ∂

∂xk
, w

)
,

∂

∂xl

)
= R

(4)

αδ̄
ξαζ̄δ +R

(3)

αδ̄
ζαξ̄δ.

This completes the proof. □

We recall that the Ricci curvature tensor Rij of the connection D is defined
by

Rij =

2n∑
k=1

g

((
D2 ∂

∂xi

)(
ek,

∂

∂xj

)
, ek

)
= gklg

((
D2 ∂

∂xi

)(
∂

∂xk
,

∂

∂xj

)
,

∂

∂xl

)
.

From (22), we can see Rij ̸= Rji in general. It follows from (22) that Rij = Rji

if and only if R
(3)

αδ̄
= R

(4)

αδ̄
. Are there some Hermitian manifolds such that

Rij = Rji?
Let

Tα
βγ = Γα

β;γ − Γα
γ;β = hλ̄α

(
∂hβλ̄

∂zγ
−

∂hγλ̄

∂zβ

)
be the torsion tensor of the Chern connection D. Set Tβ =

∑n
α=1 T

α
βα. Lee [5]

first introduced the following conformal invariant

(23) bαβ̄ =
∂Tα

∂z̄β
−

∂Tβ̄

∂zα
,

where Tβ̄ = Tβ . In fact, it is easy to see

(24) bαβ̄ = R
(4)

αβ̄
−R

(3)

αβ̄
.

If there exists a positive scalar function ρ in (M,h) such that ρh is a Kähler
metric, we call (M,h) a conformally Kähler manifold. Westlake [12] proved
bαβ̄ = 0 on conformally Kähler manifolds. Hence Rij = Rji on conformally
Kähler manifolds [1]. Next we provide an example such that Rij = Rji.
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Example 2.5. Let Bn = {z ∈ Cn : |z|2 =
∑n

α=1 |zα|2 < 1} be the unit ball

in Cn (n > 1) endowed with a Hermitian metric h = 4|dz|2
(1−|z|2)2 . We put the

symbols as above. A direct computation shows that

Rαβ̄µν̄ =
4δαβ

(1− |z|2)4
[
(1− |z|2)δµν + z̄µzν

]
,

R
(3)

αβ̄
=

2

(1− |z|2)2
[
(1− |z|2)δαβ + z̄αzβ

]
,

R
(4)

αβ̄
=

2

(1− |z|2)2
[
(1− |z|2)δαβ + z̄αzβ

]
,

where δαβ are Kronecker symbols. Hence R
(4)

αβ̄
= R

(3)

αβ̄
yields Rij = Rji.

Proposition 2.6. Let (M,h) be a Hermitian manifold with the background
Riemannian metric g = Reh. Suppose D is the metric connection induced by
the Chern connection under the bundle isomorphism o. Then sssD is equal to

four times of the second Chern scalar curvature sss
(2)
D , i.e.,

(25) sssD = 4sss
(2)
D .

Proof. For simplicity, we denote by

RicRicRicD(u) := RicRicRicD(u, u) = Riju
iuj ,

then

sssD =
1

2
gij (Rij +Rji) =

1

2
gij

∂2RicRicRicD(u)

∂ui∂uj
= 2hδ̄α ∂

2RicRicRicD(u)

∂ξα∂ξ̄δ

= 2hδ̄αhλ̄κ (Rαλ̄κδ̄ +Rκδ̄αλ̄) = 4sss
(2)
D .

This completes the proof. □

There are various Hermitian connections on the holomorphic tangent bun-
dle in [2]. We can consider the metric connection induced by any Hermitian
connection under the bundle isomorphism o. For example, we can consider the
Levi-Civita connection ∇lc on T 1,0M (i.e. the restriction of the complexified
Levi-Civita connection ∇ to T 1,0M , see [3]). We denote by sss∇lc the scalar
curvature of the metric connection induced by the Levi-Civita connection ∇lc

on T 1,0M . Gauduchon [1] showed that sss∇lc and the Riemannian scalar curva-
ture sss∇ coincide on a compact Hermitian manifold if and only if the compact
Hermitian manifold is balanced.
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