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THE CHERN SECTIONAL CURVATURE OF A HERMITIAN
MANIFOLD

PANDENG CAO AND HONGJUN LI

ABSTRACT. On a Hermitian manifold, the Chern connection can induce a
metric connection on the background Riemannian manifold. We call the
sectional curvature of the metric connection induced by the Chern con-
nection the Chern sectional curvature of this Hermitian manifold. First,
we derive expression of the Chern sectional curvature in local complex co-
ordinates. As an application, we find that a Hermitian metric is Kahler
if the Riemann sectional curvature and the Chern sectional curvature co-
incide. As subsequent results, Ricci curvature and scalar curvature of the
metric connection induced by the Chern connection are obtained.

1. Introduction

Suppose (M, h) is an n-dimensional Hermitian manifold, and ¢ = Reh is
the background Riemannian metric associated to h. Let z = (2%,...,2") and
x = (z!,...,2%") be local complex and real coordinates of a point p € M, where
2% = x%4++/—12"+% 1 < o < n. In this paper, we assume that lowercase Greek
indices run from 1 to n and lowercase Latin indices run from 1 to 2n. In local
coordinates, we denote by h = h,3(2)dz*dz" and g = Reh = g;;(x)dz’dz.
Let w = v/=1h,5(2)dz* A dz° be the Kihler form associated to the Hermitian
metric h. If the Kahler form w is closed, i.e., dw = 0, then we call h a Kahler
metric.

Let us denote by D and V the Chern connection and the Levi-Civita (or
Riemannian) connection, respectively. The curvature operators of the Chern
connection and the Levi-Civita connection are denoted by R and R, respec-
tively. It is well known that h is Kahler if and only if the Chern connection
D coincides with the Levi-Civita V (refer to [4,10,14], etc.). Hence R is the
linear extension of R over C under Kahler hypothesis.

We define a bundle isomorphism , : TM — T1°M by

Uy = %(u —v—-1Ju), YueTM,
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where J is the complex structure on M. Let u, v € TM, we set £ = u,, n =
v, € THOM. If h is Kihler, then

(1) R(Ju,u,v, Jv) = 2R (&,€,1,7) ,
R(u,v,v,u)

= S[REnnE +R(EED) - RERED - R(En D))

The first formula can be referred to [14], and the second formula can be referred
to [9,11]. Especially, if we take v = w in (1) or take v = Ju in (2), then (1)
and (2) become

3) R(Ju,u,u, Ju) = 2R(§,€,€,€)

(2)

under Kéhler hypothesis.

In this paper, we will give a geometric characterization of the right hand
side in (2) when h is non-Kéhler. In local coordinates, the right hand side in
(2) can be written as

1 — | = —

3 Rapys (617 =€) (1€ = &7°),
where R, 5.5 =R (%, %, %, %) . Under the bundle isomorphism ,, any
Hermitian connection on 71 M induces a metric connection on the Riemann-
ian manifold (M,g) [4]. A connection is metric if it is compatible with the
background Riemannian metric ¢ = Reh [4]. When no confusion can rise, we

still denote by D the metric connection induced by the Chern connection D
under the bundle isomorphism ,. We find that

R (€7 €Y (€ — )
(o568 - (g i) — ~ [hos (€7 +n°€%)]?
4

is just the sectional curvature of the metric connection induced by the Chern
connection D under the bundle isomorphism ,, and we call it the Chern sec-
tional curvature of (M, h).

Theorem 1.1. Let (M, h) be a Hermitian manifold with the background Rie-
mannian metric g = Reh. Suppose D is the metric connection induced by
the Chern connection under the bundle isomorphism ,. For arbitrary u =

u? a?ci’ v = o a?c'i € TM, we have

@ g (D)wu),0) = §Reso5 (€7 — ) (€ — ),

where £ = u, and n =v,. Fspecially,

() 9 ((D*u)(Ju,u), Ju) = 2R, 5,567 €€
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From (4) in Theorem 1.1, we can see

9 ((D*u)(v,u),v) = g ((D*v)(u,v),u) .

Recently, Li and Qiu [6] proved that a Hermitian manifold such that (3) is
Kéhler. Hence, (5) in Theorem 1.1 and the main result in [6] can imply the
following corollary.

Corollary 1.2. Let (M,h) be a Hermitian manifold such that the Riemann
sectional curvature and the Chern sectional curvature coincide. Then h is a
Kdhler metric.

When £ is not Kéhler, there are four Ricci curvatures and two scalar curva-
tures of the Chern connection D, which are respectively denoted by

RiC(Dl) = \/jlmsgdza ANdZ®  with 9‘{(1) hM%VMﬁ’
Ricl) = V-IR)dz Adz” with RC) = V%R, 55,
Ric (3) Fm(g)dz ANdZ® with ER((I) hérymfyﬁadv
Ricj) = vV=1RYdz ndz” with R = nR5,5,

sg) — h,éa%(alﬁ)’ S(D) hﬁam@)
We can also define the Ricci curvature of the induced metric connection D.
Suppose {e;}?", is an orthonormal frame with respect to the background
Riemannian metrlc g. We define the Ricci curvature Ricp of the induced
metric connection D by

(6) Ricp (u,v) = Zg ((D*u)(es,v),€;), u,veTM.

We denote by

0 () ()

the Ricci curvature tensor of the induced metric connection D. But we find
that R;; # Ry;, and R;; = Ry; if and only if the conformal invariant b,z = 0.
The definition of b, 5 can be seen in Section 2. By using Westlake’s result [12],
we can see R;; = R, if (M, h) is a conformally Kahler manifold.

The scalar curvature sp of the induced metric connection D is defined by

2n
(8) Sp = Z g((D2€j>(€i,€j),€i) .
ij=1
We also derive expression of sp in local complex coordinates, and find that sp

is equal to four times of the second Chern scalar curvature s( ),
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2. The Chern sectional curvature

The Chern connection D is the unique connection on the holomorphic tan-
gent bundle T™9M, which is compatible with the Hermitian metric h and the
complex structure J. We denote by

s Ohgsy
—_ (p) — (o _ da ZTBA
0= (0[3) = (Fﬁ;,ydzv) = <h 782;’)’ dZ’Y>

the n x n matrix of connection 1-forms. The curvature operator R of D is
defined by

(9) m(gaﬁ7<7>_<) =h ((DCD)Z - D)ZDC - D[C,)Z]) gvﬁ) ) vfa m, Ca X € Tl’OM?
where [, | is the Lie bracket. We call
g o0 0 0 82h(¥3 Oh,x , 5. Ohep
10)  Rogs =R 5752 7os | = — oA A Z K0
(10)  Ropos (aza’ 978’ 027’ 825> 97055 o1 T 02
the holomorphic sectional curvature tensor of D. Ulteriorly, the holomorphic
sectional curvature is defined by

o Hscie) - HEEED

hEo?

We still denote by D the metric connection on the Riemannian manifold
(M, g), which is induced by the Chern connection D under the bundle isomor-
phism ,. Then

Ve e THOM.

O _ L iy 0 Yl goyg 2
(12) Dam =3 0a +00) @ 555 = 5= (0= 0) © o

0  _V=lips_goyve 9 L 1ips, g8

e = g e =0a) ® g5+ 5 Pt 0a) © grmm

For a general Hermitian manifold (M, h), the induced metric connection D is
compatible with the background Riemannian metric g, but not torsion free.

Definition. Let (M, h) be a Hermitian manifold. We call
9((D*u)(v,u), v)
g(u7 u)g(v, U) - g(u, ’U)2
the Chern sectional curvature of the 2-plane II(u,v) spanned by two linearly

independent tangent vectors u = u"’%, v="1! 8‘; eTM.

(13) Kp(u,v) =

The Levi-Civita connection V is the unique connection on the tangent bundle
T M, which is torsion free and compatible with the background Riemannian
metric ¢ = Reh. Let us denote by

k k 3.4
Pi = ’Yz‘jdwj
the connection 1-forms of the Levi-Civita connection V, where

1w <3gu+ Ogji 891)

A
) oxd Ozt ox!
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is the connection coefficient of V. The curvature operator R of V is defined by
(14) R(u,v,w,y) =g ((vuv@ — VoV — V[u)v}) w,y) , Yu, v, w, y e TM.
The Riemann sectional curvature on the 2-plane II(u, v) is defined by
R(u,v,v,u)

g(uv U)Q(U, U) - g(u7 U)2 ‘
We call II(u, Ju) a holomorphic plane section [14].

If (M, h) is a Kéhler manifold, then the induced metric connection D and
the Levi-Civita connection V coincide, thus Kp(u,v) = Kv(u,v).

Now if we extend the background Riemannian metric g linearly over C to
the complexified tangent bundle TcM = TM ® C = TY°M @ T%!' M, then

o aN_ (0 oY\,
INo207928) "9\ pz07028) ~

0 9 N_ (90 9\_1,
I\9z07 928 ) “I\9z02 9.8 ) T "B
Hence

(16) h(€m) =29 (&), V& neTHOM.

Next we give an expression of the Chern sectional curvature in local complex
coordinates.

(15) Ky (u,v) =

Proof of Theorem 1.1 We denote by D% = Nf% and 6 = (éf) It follows
from (12) that

(17) 0 = Fdiag {0,0} F~',

_ 1 I LT —/—1I . .
where F = ( VoIl -l )7 F = 3 ( I VT > is the inverse of
F, I is the n X n identity matrix, diag {9, 9} = g g
the calculation process, we introduce the following notations. Set

9 _ (9 J o_(o Oo0N 9_(9o 9
or  \oxl U022 )0 9 \9: U 0an) 9: \opt 9 )

then
o (0 9\ .

where F'* means the transpose of F'. We still denote by A® the transpose of a
vector A. For any u = ulaz,i eTM,&=u,= §a% € TYOM, we set

u:(u17"'7u2n)’ £:(€13"'?§n)5

. In order to simplify

then
u=(EF "
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By a straightforward computation, we have

N 9
i k %
D2u =/ (a0 N0} ) @ 5

—u(di-ind)e (51)

— (€. E)ding {d)— 0 N0, d)— O A} @ ( (

(

)

Slofle

e () vewno (3)
— 7 (008) ® 5+ € (00) ©

OzH ozk
0 [ 0
_ o e ¥ 50 2 _¢B B v 50 .
=& (L 5do7 N d") © o= — & (Wi da Ad2) @ o,
where d = 8 + 9 is the exterior differentiation. Hence
. B o 0 g O
(D?u) (v, w) = (17¢° = i) (5 R 5o~ & Rhsy )

W FE
(18) g ((D*u)(v,w),y) =%%575(€“>25 — X&) (¢ - ),

where w, y € TM, ( = w,, X = yo € TV M. Especially, we can obtain (4) by
taking w = u and y = v in (18). Note that

1 v—=1
(Ju), = 3 (Ju—V=1J%u) = 5 (u—V=1Ju) = J(u,).
In order to prove (5), we only replace v and 1 in (4) with Ju and +/—1wv,
respectively. (I

According to (4) in Theorem 1.1, we have
1 _ _
5 Rapas (€777 = nE%) (W€ — £7°)
(19) Kp(u,v) = - T —-
(hag€@8P) - (hysm®) — = [hog (€777 +1°EP)]
4
It follows from the above formula that
Kp(u,v) = Kp(v,u).
Remark 2.1. By (18), we have
(20) g((Dzu)(Jw,w),Ju) = 2R (U, Uy, W, Wy ) -
Remark 2.2. By (18), it is clear that
g ((DQu) (mu}),y) =g ((Dgu)(Jv, Jw),y) =g ((DQJu) (v, w), Jy) ,
9 ((D*u)(v,w),y) = —g ((D*y) (v, w),u) = =g ((D*u)(w,v),y).




THE CHERN SECTIONAL CURVATURE OF A HERMITIAN MANIFOLD 903

But we can not expect the following formula

9 ((D*u)(v,w),y) = g ((D*v)(u,y),w)
always holds for arbitrary u, v, w, y € TM.
As an application, we can extend Lu’s result [8] of Kéahler manifolds with
non-negative (or non-positive) Riemann sectional curvatures on Kéhler-like
manifolds with non-negative (or non-positive) Chern sectional curvature. Yang

and Zheng [13] defined Kéhler-like manifolds, which are classes of non-Kéhler
manifolds.

Definition ([13]). A Hermitian metric h is called Ké&hler-like, if its holomor-
phic sectional curvature tensor satisfies R,5.5 = R, 5,5 for all a, B, 7,5 =
1,2,...,n.

By using the same method as that in [8], we have the following result without
details.

Proposition 2.3. Let (M,h) be a Kdhler-like manifold with non-negative
(resp. non-positive) Chern sectional curvature. Then

N _ o
(21) 1R (&6 m,m)|” <R(EEEE) R, m,m,7).-
Proposition 2.4. For arbitrary u = ui%, w=w' o?ci € TM, we have
(22) Ricp (u,w) = RVea(? + mE g,

where £ = u,, ( = W,.

Proof. For any lowercase Greek index «, we denote by o = a +n. By (18),
we have

0 0 =
g ((D2U) <8.T’€ ) U)) ) W) =Re (ma:\mgfacé - %aj\vkga(y)7

0 0 =
o (100 (5.0) - i) =1 O T = a0,

0 0 =
9 ((DQU) (al.m w) ’M) = —Im (R3¢ + Ranynb¢7),

0 0 =
I <(D2u) (8z"”~* ’w> 7 3:E)‘*> —Re (ma;\nggagé + ma;\vfifagfy)'

Set L = (Lux)i<nacn = L+ V=1Ly, where L5 = Ro5,56°C°, L1 =
ReL and Ly = ImL. Set K = (K,{A)1<m>\<n = K, + vV/—1K,, where L\ =
Rasyr€?CY, K1 = ReK and Ky = Im K. Being similar to the formula (2.18)
in [7], we can write as

Li— K, Ly—K,
—Ly— Ky Li+K;

_ 1 _
=Fdiag {L,L} F~' — idiag{l,—I}Fdiag{K,K} F'diag {I,—1I}.
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Denote by G = (g;;) and H = (h,z), then
G'=Fdiag{H " H '} F~".
A direct computation shows that
e (A B
=tr (H'L)+tr (H'L)
= PR 5,50+ IR 5,569,
where tr () means the trace of a square matrix. Hence

Riep (1, w) = gy <(D2u) ( 0 ) , 81) _ R@eags 4 ;O cogd,

05" ) o

This completes the proof. (I

We recall that the Ricci curvature tensor R;; of the connection D is defined

by
2n ) a (9
mijzzg D@xi €57 | ek
k=1

aN[ o o\ 0
_ kKl 2 = I
—9 g((D axi) (axk’axa‘)’axl)'

From (22), we can see R;; # Rj; in general. It follows from (22) that R;; = Ry,
if and only if 9%%) = DC{S%). Are there some Hermitian manifolds such that
g{ij = fﬁjz?

Let

s (Ohgx  Oh.3
a _ o a  _ pAa BA A
Tﬁ’y*Fﬂ;’y* 'y;ﬂ*h <327 az,@>
be the torsion tensor of the Chern connection D. Set T = > 7_, Tf,,. Lee [5]
first introduced the following conformal invariant

oT, OT;

23) Peh = 328 " e

where T3 = Tps. In fact, it is easy to see
__ @ (3)
(24) baﬁ_maﬁ_maé‘

If there exists a positive scalar function p in (M, h) such that ph is a Kédhler
metric, we call (M,h) a conformally Kahler manifold. Westlake [12] proved
bog = 0 on conformally Kahler manifolds. Hence R;; = %Rj; on conformally
Kéhler manifolds [1]. Next we provide an example such that R;; = R;;.
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Example 2.5. Let B" = {z € C" : |z = }_""_, |2®|> < 1} be the unit ball
2
in C"(n > 1) endowed with a Hermitian metric h = (14_|(‘122ﬂ2)2. We put the

symbols as above. A direct computation shows that

460‘5 2 SV
Rojuo Zm [(1 —12|%)0p + 22 ] )
(3) _ 2 1— 122 o B
N5 TEERE [(1—|2]*)dap + 2%2°],
@ __ 2 2 a8
) — 1— O ,
N5 SEDE (1= |2]*)6ap + 227 ]

where d,5 are Kronecker symbols. Hence SRS% = i)‘{fﬁ) yields R;; = Ry;.

Proposition 2.6. Let (M,h) be a Hermitian manifold with the background
Riemannian metric g = Reh. Suppose D is the metric connection induced by

the Chern connection under the bundle isomorphism ,. Then 8p is equal to

. 2 .
four times of the second Chern scalar curvature 353), i.e.,

(25) Sp = 48(5).
Proof. For simplicity, we denote by
Ricp(u) := Ricp(u,u) = Ryju'n?,

then
1 .. 1 --82RicD(u) 5 32RicD(u)
= g (R + R = —gf 2 gpdaZ DT
sp = 59" i + i) = 59" =5 5 DEDED
= 2h8ahx}{ (%aj\mg + mmgaS\) - 4S(Dz)
This completes the proof. O

There are various Hermitian connections on the holomorphic tangent bun-
dle in [2]. We can consider the metric connection induced by any Hermitian
connection under the bundle isomorphism ,. For example, we can consider the
Levi-Civita connection V!¢ on THOM (i.e. the restriction of the complexified
Levi-Civita connection V to T19M, see [3]). We denote by sy the scalar
curvature of the metric connection induced by the Levi-Civita connection V%
on T19M. Gauduchon [1] showed that sy:. and the Riemannian scalar curva-
ture sy coincide on a compact Hermitian manifold if and only if the compact
Hermitian manifold is balanced.
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