Acknowledgement
All the authors express gratitude to The Korean Journal of Mathematics for their assistance in getting this manuscript completed. We would like to express our gratitude to the editors and the reviewers for their thorough reading and giving the opportunity to reset the manuscript in a nice way.
References
- Abbas, M., Rhoades, B. E., Fixed and periodic point results in cone metric space, Appl. Math. Lett. 22 (4) (2009), 511-515. https://doi.org/10.1016/j.aml.2008.07.001
- Abdeljawad, T., Mlaiki, N., Aydi, H., Souayah, N. Double controlled metric type spaces and some fixed point results, Mathematics. 6 (2018), 320. https://doi.org/10.3390/math6120320
- Bakhtin, I. A., The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26-37.
- Banach, S., Surles operations dans les ensembles abstract et leur application aux equation integrals, Fund.Math., 3(1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
- Bianchini, R. M. T., Su un problema di S. Reich riguardante la teoria dei punti fissi, Bolletino U.M.I., 4 (5) (1972), 103-106.
- Brouwer, F., The fixed point theory of multiplicative mappings in topological vector spaces, Mathematische Annalen., 177 (1968), 283-301. https://doi.org/10.1007/BF01350721
- Chatterjea, S. K., Fixed point theorems , C. R. Acad. Bulg. Sci., 25 (1972), 727-730.
- Ciric, L. B., Generalized contractions and fixed point theorems, Publ. Inst. Math. (Bulgr). 12 (26) (1971), 19-26.
- Dass, B. K., Gupta, S., An extension of Banach contraction principle through rational expression, Communicated by F.C. Auluck, FNA.,1975.
- Hardy, G. E., Rogers, T.D., A generalization of fixed point theorem of Reich, Can. Math. Bull., 16 (1973), 201-206. https://doi.org/10.4153/CMB-1973-036-0
- Haung, L. G., Zhang, X., Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (4) (2007), 1468-1476. https://doi.org/10.1016/j.jmaa.2005.03.087
- Huaping Huang, Stojan Radenovic, Guantie Deng, A sharp generalization on cone b-metric space over Banach algebra, J. Nonlinear Sci. Appl. 10 (2017), 429-435. http://dx.doi.org/10.22436/jnsa.010.02.09
- Jaggi, D. S., Some unique fixed point theorems, Indian Journal of Pure and Applied Mathematics, 8 (1977), 223-230.
- Kannan, R., Some results on fixed points, Bull Calcutta Math.Soc, 60 (1968), 71-76.
- Kannan, R., Some results on fixed points II, Am.Math.Mon. 76 (1969), 405-408.
- Karapinar, E., A new non-unique fixed point theorem, Ann. Funct. Annals. 2 (1) (2011), 51-58. https://doi.org/10.15352/afa/1399900261
- Khan, M. S., A fixed point theorems for metric spaces, Rendiconti Dell 'istituto di mathematica dell' Universtia di tresti, 8 (1976), 69-72.
- Khuri, S. A., Louhichi, I., A novel Ishikawa-Green's fixed point scheme for the solution of BVPs, Appl. Math. Lett. 82 (2018), 50-57. https://doi.org/10.1016/j.aml.2018.02.016
- Kumar. K, Rathour. L, Sharma. M. K, Mishra V. N. Fixed point approximation for suzuki generalized nonexpansive mapping using B(δ,µ) condition, Applied Mathematics 13 (2) (2022), 215-227. https://doi.org/10.4236/am.2022.132017
- Marudai, M., Bright V. S., Unique fixed point theorem weakly B-contractive mappings, Far East journal of Mathematical Sciences (FJMS), 98 (7) (2015), 897-914. https://doi.org/10.17654/FJMSDec2015_897_914
- Mishra. L. N, Dewangan. V, Mishra. V. N, Karateke. S, Best proximity points of admissible almost generalized weakly contractive mappings with rational expressions on b-metric spaces, J. Math. Computer Sci. 22 (2) (2021), 97-109. https://doi.org/10.22436/jmcs.022.02.01
- Mishra. L. N, Dewangan. V, Mishra. V. N, Amrulloh. H, Coupled best proximity point theorems for mixed g-monotone mappings in partially ordered metric spaces, J. Math. Comput. Sci. 11 (5) (2021), 6168-6192. https://doi.org/10.28919/jmcs/6164
- Mishra. L. N, Mishra. V. N, Gautam. P, Negi. K, Fixed point Theorems for Cyclic-Ciric-Reich-Rus contraction mapping in Quasi-Partial b-metric spaces, Scientific Publications of the State University of Novi Pazar Ser. A: Appl. Math. Inform. and Mech. 12 (1) (2020), 47-56. http://dx.doi.org/10.5937/SPSUNP2001047M
- Mishra L. N, Tiwari. S. K, Mishra. V. N, Fixed point theorems for generalized weakly Scontractive mappings in partial metric spaces, Journal of Applied Analysis and Computation 5 (4) (2015), 600-612. https://doi.org/10.11948/2015047
- Mitrovic, Z. D., Radenovic, S., The Banach and Reich contractions in bv(s)-metric spaces, J. Fixed Point Theory Appl. 19 (2017), 3087-3095. http://dx.doi.org/10.1007/s11784-017-0469-2
- Mlaiki, N., Aydi, H., Souayah, N., Abdeljawad, T., Controlled metric type spaces and related contraction principle, Mathematics 6 (10) (2018), 194. https://doi.org/10.3390/math6100194
- Mlaiki, N., Double controlled metric-like spaces, J. Inequal. Appl. 189 2020. https://doi.org/10.1186/s13660-020-02456-z
- Reich, S., Some remarks connecting contraction mappings, Can. Math. Bull. 14 (1971), 121-124. https://doi.org/10.4153/CMB-1971-024-9
- Roshan, J. R., Parvanesh, V., Kadelburg, Z., Hussain, N., New fixed point results in b-rectangular metric spaces, Nonlinear Analalysis: Modelling and control 21 (5) (2016), 614-634. http://dx.doi.org/10.15388/NA.2016.5.4
- Sanatee. A. G, Rathour. L, Mishra. V. N, Dewangan. V Some fixed point theorems in regular modular metric spaces and application to Caratheodory's type anti-periodic boundary value problem, The Journal of Analysis 31 (2023), 619-632. https://doi.org/10.1007/s41478-022-00469-z
- Sanatee. A. G, Ranmanesh. M. Mishra. L. N, Mishra. V. N, Generalized 2-proximal C-contraction mappings in complete ordered 2-metric space and their best proximity points, Scientific Publications of the State University of Novi Pazar Ser. A: Appl. Math. Inform. and Mech, 12 (1) (2020), 1-11. http://dx.doi.org/10.5937/SPSUNP2001001S
- Shahi P, Rathour L, Mishra. V. N Expansive Fixed Point Theorems for tri-simulation functions, The Journal of Engineering and Exact Sciences -jCEC 08 (3) (2022), 14303-01e. https://doi.org/10.18540/jcecvl8iss3pp14303-01e
- Sharma. N, Mishra. L. N, Mishra. V. N, Almusawa. H, Endpoint approximation of standard three-step multi-valued iteration algorithm for nonexpansive mappings, Applied Mathematics and Information Sciences 15 (1) (2021), 73-81. https://doi.org/10.18576/amis/150109
- Sharma. N, Mishra. L. N, Mishra. V. N, Pandey. S, Solution of Delay Differential equation via Nv1 iteration algorithm, European J. Pure Appl. Math. 13 (5) (2020), 1110-1130. https://doi.org/10.29020/nybg.ejpam.v13i5.3756
- Sharma. N, Mishra. L. N, Mishra. S. N, Mishra. V. N, Empirical study of new iterative algorithm for generalized nonexpansive operators, Journal of Mathematics and Computer Science 25 (3) (2022), 284-295. https://dx.doi.org/10.22436/jmcs.025.03.07
- Shateri, T. L., Double controlled cone metric spaces and the related fixed point theorems, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 30 (1) (2023), 1-13. https://doi.org/10.48550/arXiv.2208.06812
- Slobodanka Jankovic, Zoran Kadelburg, Stojan Radenovic, On cone metric spaces: A survey, Nonlinear Analysis 74 (2011) 2591-2601. https://doi.org/10.1016/j.na.2010.12.014
- Stojan Radenovic, Common Fixed Points Under Contractive Condition in Cone Metric Spaces, Computers and Mathematics with applycation 58 (2019),1273-1278. https://doi.org/10.1016/j.camwa.2009.07.035
- Suzana Aleksic, Zoran Kadelburg, Zoran. D. Mitrovic, Stojan Radenovic, A new survey: cone metric spaces, Journal of the international Mathematical Vertiual Institute 9(2019), 93-121. https://api.semanticscholar.org/CorpusID:119572977
- Theivaraman. R, Srinivasan. P. S, Thenmozhi. S, Radenovic. S, Some approximate fixed point results for various contraction type mappings, 13 (9) (2023), 1-20. https://doi.org/10.28919/afpt/8080
- Theivaraman. R, Srinivasan. P. S, Radenovic. S, Choonkil Park, New Approximate Fixed Point Results for Various Cyclic Contraction Operators on E-Metric Space, 27 (3) (2023), 160-179. https://doi.org/10.12941/jksiam.2023.27.160
- Vishnu Narayanan P: B. Deshpande, V.N. Mishra, A. Handa, L.N. Mishra, Coincidence Point Results for Generalized (ψ, θ, φ)-Contraction on Partially Ordered Metric Spaces, Thai J. Math., 19 (1) (2021), 93-112.
- Vishnu Narayanan P, Mishra. L. N, Tiwari. S. K, Mishra. V. N, Khan. I. A; Unique Fixed Point Theorems for Generalized Contractive Mappings in Partial Metric Spaces, Journal of Function Spaces, 2015 (2021), Article ID 960827, 1-8. https://doi.org/10.1155/2015/960827
- Zamfirescu, T., Fixed point theorems in metric spaces, Arch. Math. (Basel) 23(1972), 292-298. https://doi.org/10.1007/BF01304884
- Zoran Kadelburg, Stojan Radenovic, Vladimir Rakocevic, A note on the equivalence of some metric and cone metric fixed point results, Applied Mathematics Letters, 24 (2011), 370-374. https://doi.org/10.1016/j.aml.2010.10.030