DOI QR코드

DOI QR Code

A (k, µ)-CONTACT METRIC MANIFOLD AS AN η-EINSTEIN SOLITON

  • Received : 2024.02.10
  • Accepted : 2024.04.23
  • Published : 2024.06.30

Abstract

The aim of the paper is to study an η-Einstein soliton on (2n + 1)-dimensional (k, µ)-contact metric manifold. At first, we establish various results related to (2n + 1)-dimensional (k, µ)-contact metric manifold that exhibit an η-Einstein soliton. Next we study some curvature conditions admitting an η-Einstein soliton on (2n+1)-dimensional (k, µ)-contact metric manifold. Furthermore, we consider specific conditions associated with an η-Einstein soliton on (2n+1)-dimensional (2n+1)-dimensional (k, µ)-contact metric manifold. Finally, we show the existance of an η-Einstein soliton on (k, µ)-contact metric manifold.

Keywords

References

  1. N. Basu and A. Bhattacharyya, Conformal Ricci soliton in Kenmotsu manifold, Global Journal of Advanced Research on classical and Modern Geometrices, 4 (1) (2015), 15-21. 
  2. A. M. Blaga, On gradient η-Einstein solitons, Kragujevac Journal of Mathematics 42 (2) (2018), 229-237. https://doi.org/10.5937/KGJMATH1802229B 
  3. D. E. Blair, J. S. Kim and M. M. Tripathi, On the concircular curvature tensor of a contact metric manifold, J.Korean Math.Soc. 42 (2005), 883-992. https://doi.org/10.4134/JKMS.2005.42.5.883 
  4. D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), 189-214.  https://doi.org/10.1007/BF02761646
  5. D .E. Blair, Contact manifolds in Riemannian geometry, Lecture notes in Mathematics, Springer-Verlag, Berlin, Vol.509 (1976). 
  6. D. E. Blair, Two remarks on contact metric structures, Tohoku Math.J. 29 (1977), 319-324. https://doi.org/10.2748/TMJ/1178240602 
  7. E. Boeckx, P. Bueken and L. Vanhecke, φ-symmetric contact metric spaces, Glasgow Math. J. 41 (1999), 409-416.  https://doi.org/10.1017/S0017089599000579
  8. E. Boecks, A full classification of contact metric (k, µ)-spaces, Illinois J. Math. 44 (2000), 212-219. 
  9. C. Calin and M. Crasmareanu, η-Ricci solitons on Hopf hypersurfaces in a complex space forms, Revue Roumaine de Math.Pures et Appl. 57 (1) (2012), 53-63. 
  10. G. Catino and I. Mazzieri, Gradient Einstein solitons, Nonlinear Anal. 132 (2016), 66-94. https://doi.org/10.1016/j.na.2015.10.021 
  11. J.T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J 61 (2) (2009), 205-212. https://doi.org/10.2748/tmj/1245849443 
  12. Mohd. Danish Siddiqi, Conformal η-Ricci solitons in δ-Lorentzian trans Sasakian manifolds, International Journal of Maps in Mathematics 1 (1) (2018), 15-34. 
  13. U. C. De and A. A. Shaikh, Complex Manifolds and Contact Manifolds, 142-143. 
  14. A. E. Fischer, An introduction to conformal Ricci flow, class. Quantum. Grav. 21 (2004), 171-218. https://doi.org/10.1088/0264-9381/21/3/011 
  15. R. S. Hamilton, The formation of singularities in the Ricci flow, Surveys in Differential Geometry (Cambridge, MA, 1993) 2 7-136, International Press, Cambridge, MA, 1995. 
  16. R. S. Hamilton, Three manifolds with positive Ricci curvature, J.Differential Geom. (1982), Vol.17, isu.2, 255-306. https://doi.org/10.1086/wp.17.4.1180866 
  17. D. Kar, P. Majhi and U. C. De, η-Ricci solitons on 3-dimensional N(k)-contact metric manifolds, Acta Univ. Apulensis 54 (2018), 71-88. 
  18. T. Koufogiorgos, Contact metric manifolds, Annals of Global Analysis and Geometry 11 (1993), 25-34. https://doi.org/10.1007/BF00773361 
  19. T. Koufogiorgos, On a class of contact Riemannian 3-manifolds, Results in Mathematics 27 (1995), 51-62. https://doi.org/10.1007/BF03322269 
  20. E. M. Patterson, Some theorems on Ricci recurrent spaces, J. London Math. Soc. 27 (1952), 287-295.  https://doi.org/10.1112/jlms/s1-27.3.287
  21. S. Tanno, The topology of contact Riemannian manifolds, Illinois J. Math. 12 (1968), 700-717. https://doi.org/10.1215/IJM/1256053971 
  22. M. M. Tripathi and J. S. Kim, On the concircular curvature tensor of a (k, µ)-manifold, Balkan J Geo Appl 2 (2004), 104-114. 
  23. C. Udriste, On contact 3-structures, Bull. Univ. Brasov 16 (1974), 85-92. https://doi.org/10.1007/s002090100279 
  24. K. Yano, Concircular geometry I. Concircular transformations, Proc. Impe. Acad., Tokyo., 16 (1940), 195-200. https://doi.org/10.3792/PIA/1195579139 
  25. K. Yano, On torse-forming directions in Riemannian spaces, Proc. Impe. Acad., Tokyo., 20 (1944), 701-705. https://doi.org/10.3792/PIA/1195572958