Acknowledgement
The authors are very much thankful to the reviewers for their valuable suggestions to bring the paper in its present form.
References
- A. Azam, F. Brain & M. Khan: Common fixed point theorems in complex valued metric spaces. Numer. Funct. Anal. Optim. 32 (2011), no. 3, 243-253. https://doi.org/10.1080/01630563.2011.533046
- R. Agarwal, M.P. Goswami & R.P. Agarwal: Bicomplex version of Stieltjes transform and applications. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 21 (2014), 229-246.
- S. Bhattacharyya, C. Biswas & T. Biswas: Common fixed point theorems in connection with two weakly compatible mappings in menger space with bicomplex-valued metric. Electron. J. Math. Anal. Appl. 12, (2024), no. (1, 9), 1-10. https://doi.org/10.21608/EJMAA.2024.243997.1087
- S. Chauhan & H. Sahper: Common fixed point theorems for conversely commuting mappings using implicit relations. J. Oper. Hindawi 2013, Article ID 391474, 5 pages. https://doi.org/10.1155/2013/391474
- S. Chauhan & B.D. Pant: Fixed points of weakly compatible mappings using common (E.A) like property. Matematiche 68 (2013) no. 1, 99-116.
- J. Choi, S.K. Datta, T. Biswas & Md N. Islam: Some fixed point theorems in connection with two weakly compatible mappings in bicomplex valued metric spaces. Honam Math. J. 39 (2017), no. 1, 115-126. https://doi.org/10.5831/HMJ.2017.39.1.115
- A.J. Gnanaprakasam, S.M. Boulaaras, G. Mani, B. Cherif & S.A. Idris: Solving system of linear equations via bicomplex valued metric space. Demonstr. Math. 54 (2021), 474-487. https://doi.org/10.1515/dema-2021-0046
- Md N. Islam: Fixed point theorems based on well-posedness and periodic point property in ordered bicomplex valued metric spaces. Malaya J. Mat. 9 (2020), no. 1, 9-19. https://doi.org/10.26637/MJM0901/0002
- G. Jungck: Compatible mappings and common fixed points. Int. J. Math. Math. Sci. 9 (1986), no. 4, 771-779. https://doi.org/10.1155/S0161171286000935
- G. Jungck & B.E. Rhoades: Fixed points for set valued functions without continuity. Indian J. Pure Appl. Math. 29 (1998), no. 3, 227-238.
- M.V.R. Kameswari & A. Bharathi: Common fixed points for a pair of maps in bicomplex valued generalized metric spaces. Adv. Appl. Math. Sci. 21 (2022), no. 5, 2345-2370.
- J. Kumar, R. Sharma & A. Singh: Common fixed point theorem for converse commuting maps in complex valued metric spaces. Int. J. Math. Archive 5 (2014), no. 6, 215-220.
- R.G. Lavoie, L. Marchildon & D. Rochon: In finite-dimensional bicomplex Hilbert spaces. Ann. Funct. Anal. 1 (2010), no. 2, 75-91. https://doi.org/10.15352/afa/1399900590
- Z.X. Lu: Common fixed points for converse commuting selfmaps on a metric space. Acta Anal. Funct. Appl. 4 (2002), no. 3, 226-228 (Chinese).
- G. Mani, A.J. Gnanaprakasam, R. George & G.D. Mitrovic: The existence of a solution of a nonlinear Fredholm integral equations over bicomplex b-metric spaces. Gulf J. Math. 14 (2023), no. 1, 69-83. https://doi.org/10.56947/gjom.v14i1.984
- K. Menger: Statistical metrics. Proc. Nat. Acad. Sci., U.S.A. 28 (1942), 535-537. https://doi.org/10.1073/pnas.28.12.535
- H.K. Pathak & R.K. Verma: Integral type contractive condition for converse commuting mappings. Int. J. Math. Anal. 3 (2009), no. 24, 1183-1190.
- H.K. Pathak & R.K. Verma: An Integral type implicit relation for converse commuting mappings. Int. J. Math. Anal. 3 (2009), no. 24, 1191-1198.
- V. Popa: A general fixed point theorem for converse commuting multi-valued mappings in symmetric spaces. Filomat 21 (2007), no. 2, 267-271. https://doi.org/10.2298/FIL0702267P
- D. Rochon & M. Shapiro: On algebraic properties of bicomplex and hyperbolic numbers. An. Univ. Oradea Fasc. Mat. 11 (2004), 71-110.
- C. Segre: Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici. Math. Ann. 40 (1892), 413-467. https://doi.org/10.1007/BF01443559
- B. Schweizer & A. Sklar: Probabilistic metric spaces. North-Holland, Amsterdam, The Netherlands, 1983.
- R. Vasuki: Common fixed points for R-weakly commuting maps in fuzzy metric spaces. Indian J. Pure Appl. Math. 30 (1999), 419-423.