DOI QR코드

DOI QR Code

NEW EXTENSIONS OF THE HERMITE-HADAMARD INEQUALITIES BASED ON 𝜓-HILFER FRACTIONAL INTEGRALS

  • Huseyin Budak (Department of Mathematics, Faculty of Science and Arts, Duzce University) ;
  • Umut Bas (Department of Mathematics, Faculty of Science, Kahramanmaras SutccuImam University) ;
  • Hasan Kara (Department of Mathematics, Faculty of Science and Arts, Duzce University) ;
  • Mohammad Esmael Samei (Department of Mathematics, Faculty of Science, Bu-Ali Sina University)
  • Received : 2024.04.07
  • Accepted : 2024.07.16
  • Published : 2024.08.31

Abstract

This article presents the above and below bounds for Midpoint and Trapezoid types inequalities for 𝜓-Hilfer fractional integrals with the assistance of the functions whose second derivatives are bounded. We also possess some extensions and generalizations of Hermite-Hadamard inequalities via 𝜓-Hilfer fractional integrals with the aid of the functions that have the conditions that will said.

Keywords

References

  1. R.P. Agarwal: Certain fractional q-integrals and q-derivatives. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 66, No. 2, pp. 365-370). Cambridge University Press, 1969. doi:10.1017/S0305004100045060
  2. M.U. Awan, M.A. Noor, T.S. Du & K.I. Noor: New refinements of fractional Hermite-Hadamard inequality. RACSAM, 113 (2019), no. 1, 21-29. doi:10.1007/s13398-017-0448-x
  3. A. Berhail, N. Tabouche, J. Alzabut & M.E. Samei: Using Hilfer-Katugampola fractional derivative in initial value Mathieu fractional differential equations with application on particle in the plane. Advances in Continuous and Discrete Models: Theory and Applications 2022, 44 (2022). doi:10.1186/s13662-022-03716-6
  4. H. Budak, H. Kara, M.Z. Sarikaya & M.E. Kiri,s: New extensions of the Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals. Miskolc Mathematical Notes 21 (2020), no. 2, 665-678. doi:10.1007/s13398-017-0448-x
  5. H. Budak, E. Pehlivan & P. Kosem: On new extensions of Hermite-Hadamard inequalities for generalized fractional integrals. Sahand Communications in Mathematical Analysis 18 (2021), no. 1, 73-88. doi:10.22130/scma.2020.121963.759
  6. H. Budak: New Hermite-Hadamard type inequalities for convex mappings utilizing generalized fractional integrals. Filomat 33 (2019), no. 8, 2329-2344. doi:10.2298/FIL1908329
  7. F.X. Chen: Extensions of the Hermite-Hadamard inequality for convex functions via fractional integrals. J. Math. Inequal. 10 (2016), no. 1, 75-81. doi:10.7153/jmi-10-07
  8. F.X. Chen: On the generalization of some Hermite-Hadamard Inequalities for functions with convex absolute values of the second derivatives via fractional integrals. Ukrainian Mathematical Journal 12 (2019), no. 70, 1953-1965. doi:10.1007/s11253-019-01618-7
  9. A. Devi, A. Kumar, T.A. & A. Khan: Existence and stability analysis of solutions for fractional Langevin equation with nonlocal integral and anti-periodic type boundary conditions. Fractals 28 (2020), no. 8, 2040006. doi:10.1142/S0218348X2040006X
  10. S.S. Dragomir & C.E.M. Pearce: Selected topics on Hermite-Hadamard inequalities and applications. RGMIA Monographs, Victoria University, 2000. Online: http://www.sta.vu.edu.au/RGMIA/monographs/hermite hadamard.html.
  11. S.S. Dragomir, P. Cerone & A. Sofo: Some remarks on the midpoint rule in numerical integration. Studia Univ. Babes-Bolyai, Math. XLV (2000), no. 1, 63-74.
  12. S.S. Dragomir, P. Cerone & A. Sofo: Some remarks on the trapezoid rule in numerical integration. Indian J. Pure Appl. Math. 31 (2000), no. 5, 475-494.
  13. S. Etemad, S. Rezapour & M.E. Samei: On a fractional caputo-hadamard inclusion problem with sum boundary value conditions by using approximate endpoint property. Mathematical Methods in the Applied Sciences 37 (2020), 9719-9734. doi:10.1002/mma.6644
  14. M. Jleli & B. Samet: On Hermite-Hadamard type inequalities via fractional integrals of a function with respect to another function. Journal of Nonlinear Sciences and Applications. 9 (2016), no. 3, 1252-1260. doi:10.22436/jnsa.009.03.50
  15. A.A. Kilbas, H.M. Srivastava & J.J. Trujillo: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, 2006.
  16. A. Lachouri, M.S. Abdo, A. Ardjouni, B. Abdalla & T. Abdeljawad: On a class of differential inclusions in the frame of generalized hilfer fractional derivative. AIMS Mathematics 7 (2022), no. 3, 3477-3493. doi:10.3934/math.2022193
  17. B. Li: Refinements of Hermite-Hadamard type inequalities for operator convex functions. Int. J. Contemp. Math. Sci. 8 (2013), no. 9-12, 463-467. https://doi.org/10.12988/ijcms.2013.13046
  18. R. Mert, L. Erbe & T. Abdeljawad: A variational approach of the Strum-Liouville problem in fractional difference calculus. Dynamic Systems and Applications 27 (2018), no. 1, 137-148. doi:10.12732/dsa.v27i1.7
  19. M.V. Mihai, M.U. Awan, M.A. Noor, J.K. Kim & K.I. Noor: Hermite-Hadamard inequalities and their applications. Journal of inequalities and applications 2018 (2018), no. 1, 1-9. doi:10.1186/s13660-018-1895-4
  20. ˙I. Mumcu, E. Set, A.O. Akdemir & F. Jarad: New extensions of Hermite-Hadamard inequalities via generalized proportional fractional integral. Numerical Methods for Partial Differential Equations 2021 (2021), 1-12. doi:10.1002/num.22767
  21. M.E. Samei, V. Hedayati & S. Rezapour: Existence results for a fraction hybrid differential inclusion with Caputo- Hadamard type fractional derivative. Advances in Difference Equations 2019 (2019), 163. doi:10.1186/s13662-019-2090- 8
  22. S.G. Samko, A.A. Kilbas & O.I. Marichev: Fractional integrals and derivatives. Yverdon-les-Bains, Switzerland: Gordon and breach science publishers, 1993, (Vol. 1), Yverdon.
  23. M.Z. Sarikaya, E. Set, H. Yaldiz & N. Basak: Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities. Mathematical and Computer Modelling. 57 (2013), 2403-2407. DOI:10.1016/j.mcm.2011.12.048
  24. X.X. You, M.A. Ali, H. Budak, P. Agarwal & Y.M. Chu: Extensions of Hermite-Hadamard inequalities for harmonically convex functions via generalized fractional integrals. Journal of Inequalities and Applications 2021 (2021), no. 1, 1-22. doi:10.1186/s13660-021-02638-3