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INEQUALITIES BASED ON ¢-HILFER FRACTIONAL
INTEGRALS
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ABSTRACT. This article presents the above and below bounds for Midpoint and
Trapezoid types inequalities for i-Hilfer fractional integrals with the assistance of
the functions whose second derivatives are bounded. We also possess some exten-
sions and generalizations of Hermite-Hadamard inequalities via t-Hilfer fractional
integrals with the aid of the functions that have the conditions that will said.

1. INTRODUCTION

Inequalities have guided many studies in mathematical topics. Especially the
Hermite-Hadamard inequality (H-HI) has been the subject of many studies in the

literature. In fact, the inequality is defined for convex function g : [i1,12] — R by

(1) Q(%) < /” ) g < elin)+ela)
L1

In particular, studies on the right and left sides of the H-HI contribute to the litera-
ture. For example, Dragomir et al. proved refinements and extensions for Midpoint
type inequalities (MI) and Trapezoid type inequalities (TI) with the help of the
bounds of the twice differentiable functions in [11] and [12], respectively. Fractional
calculus is an successful apparatus to clarify physical wonders additionally real-world
issues. Fractional derivative and integral operators not as it were varied from each
other in terms of peculiarity, territory, and bits but moreover brought advancements

to fractional analysis in terms of their utilization zones and spaces [22, 15, 1].
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Fractional integrals solved many integrals in mathematics. Fractional integral
types, which are also used in the field of inequality, have provided new extensions,
refinements, and, generalizations in this field [13, 3, 21, 16, 9, 18]. Insome studies, by
using the convexity of the function, in some research, by making use of the bounds of
the second derivative, many studies that will contribute to the literature have been
made. There are many generalizations of this type about the well-known H-HI with
the help of fractional integrals in the literature. For instance, the authors in [17]
consider H-HI (1) as the form

1 \ \
2 o(M52) < /0 ol(1 = m)iy + nig] dn < inktelia)

for convex function p. In 2016, Chen obtained extensions of the H-HI for convex
functions involving Riemann-Liouville fractional integrals [7]. Mihai et al. studied
the H-HI (1) for the classes of convex, log-convex and log-concave functions [19].
Budak et al. gave bounds for the left and right hand sides of fractional Hermite—
Hadamard [4]. In [8], the extensions of the Riemann-Liouville fractional H-HI are
given for harmonic convex functions. Some TI and MI are presented for generalized
fractional integrals [5]. Also You et al. [24] considered some new H-HI for harmonic
convex functions via generalized fractional integrals. Mumcu et al. proved H-HI via
generalized proportional fractional integrals [20]. In [2], the authors obtained new
refinements of H-HI for strongly convex functions.

In this article, we will give refinements, extensions, and generalizations of H-
HI (1) with the aid of the functions that have the conditions
(3) (i1 +1a—t) = d(r) >0, re {Zl, %] ,
involving t-Hilfer fractional integrals. We will provide the necessary preliminary
information about mentioned H-HI via t-Hilfer fractional integrals.

In Section 2, we present preliminary information and results such as definition of
Riemann-Liouville fractional integrals, H-HI based on Riemann-Liouville fractional
integrals, bounds of TI and MI for Riemann and Riemann-Liouville integrals, -
Hilfer integral definitions and H-HI involving -Hilfer integral definitions. In the
main results section 3, with help of bounds of second derivative functions, we will
obtain improvements and generalizations of TI and MI using fractional integrals
of a function with respect to another function, which is the main purpose of our
article. In addition, it has been shown which inequalities are generalized among

these inequalities obtained with the help of special choices in Section 3. We will
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also observe the generalized -Hilfer fractional H-HI under different conditions with
application. Finally, we will give some suggestions to the reader in the conclusion

section 4.
2. PRELIMINARIES

First, mathematical preliminaries of fractional calculus theory and bounded func-
tions will be presented as follows. Let o € L1[i1, l2]. The Riemann-Liouville integrals
J]fl 40 and Jé_g of order £ > 0 with i1 > 0 are introduced by

v -1 .
J]Ll;+0(t) = / i 1"7%)[) 9(77) d777 v >,
L1

¢ i2 ( _t)lfl
T, —o(v) = / nr(z) o(n) dn, t <1z,
Tt
respectively. Here JIZOI Lo(t) = JIZOQ _o(v) = o(v) [22, 15]. Sarikaya et al. first give
the following interesting integral inequalities of Hermite-Hadamard type involving

Riemann-Liouville fractional integralsIn [23].

Theorem 2.1 ([23]). Let o : [i1,l2] — R be a positive mapping with 0 < i1 < is
and o € Ly [i1,12]. If 0 is a convex function on [i1,12], then the following inequalities

inwvolving Rieamann-Liouville fractional integrals hold:

(4) o () < S, [T 0i2) + B, _o(in)] < difelizl g,

The inequalities of the MI in [11] and the boundaries of TI in [12] are obtained
in Theorems 2.2 and 2.3.

Theorem 2.2 ([11]). Let o : [i1,12] — R be a twice differentiable mapping such that
there exists real constants mo and m° so that mo, < o” < m° . Then, the following
inequalities hold

2

(5) m, 2zt < eli)tata) / 2 o) dn < o2
i1

24 —

Theorem 2.3 ([10]). Let the conditions of Theorem 2.2 be satisfied. Then the

ollowing inequalities yield,
g Yy
S )2 i2 N o (1a—i1)2
(6) mo 27l < / 2 dy — o (52 ) < el
L1

Chen presented extension and refinement of the TIT and MI for convex mappings

utilizing Riemann-Liouville fractional integrals [7].
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Theorem 2.4 ([7]). Let o : [i1,l2] — R be a positive, twice differentiable mapping
with 11 < lg and o € Ly [i1,12] if 0" is bounded [i1,12] then we get

L1+ig

(M) iy /@1 : (% - n>2 [(b =)+ (- n)“] dn

Y N N l1+i
< ﬁ [JZerQ(Lz) + J{ff@(u)} -0 (%)

i1+io

o 2 N 2r . _ . .
< 2(2?—51_)/1 / <—L”2LL2 - 77) [(62 =)+ () 1} dn,
L1

for £ >0, where
(8) mo = inf o"(v), m°® = sup o"(v).

te[ihiQ] tE[Zl,ig}
Theorem 2.5 ([7]). Assume the conditions of Theorem 2.3. Then the following
inequality is obtained.
i1+io

2

(9) / —moe(n—h)(ig—n) |:([‘/2 _ n)@*l + ([\/1 o n)€71i| dn

2 By 7\ e
i (l2—1i1)

I(0+1) [sz+0(z2) +sz70(il)] _ g(zl);re(zz)

— Q(ig—il)l

i1+

P —mol(n—1 N R - . _
< /L et Gemn) (3 — )=+ (1 — )| an,
1
for £ >0, where mo and m° are defined in Equation (8).
The Definitions of the following v-Hilfer fractional integrals are given in [22, 15].

Definition 2.6 ([15, 22]). Let ® : [i1,12] — R be an increasing and positive mono-
tone function on (i1, 2], having a continuous derivative ¢’(t) on (i1,22). The left-
sided and right-sided fractional integrals of ¢ with resperct to the function % on
[i1,12] of order £ > 0 are defined by

T
U _ ¥'(n) s
Kol = | oy emdn, v

l2
U _ ¥'(n) 5
]ILgf;'L/JQ(t) /‘: F(g)(dl(??)*ll}(t))l_e 9(77) dnv v <2
respectively, provided that the integral exists.

Jlelli et al. gave the following H-HI for ¢-Hilfer fractional integrals in [14].
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Theorem 2.7. Let v is defined in Definition 2.7 with the same features with having
a continuos derivative ' (t) on (11,12). Let o is a convex function on [i1,i2] and
£ >0, then the following inequalities hold

i i Z A A i l
(10) Q( 2 2) = wéﬁiiimnf Fllin) + B,y 0l0) | < 800520,
where
(11) o(r) = o(r) + o(i1 +2 —x).

Budak gave the following new version of H-HI with the aid of the w-Hilfer frac-
tional integrals [6].

Theorem 2.8 ([6]). Let the assumptions of Theorem 2.7 hold. Then we have

1) o(50) < B ), 0 g 0| < B,
where ¢ is defined with Equation (11) and

N L N ¢
(13) Fo= [0 - v (52)] +[v (242) v )] -

3. MAIN RESULTS

Let’s assume the properties of the v function that we will use in this section as
follows. Let 1 : [i1,l2] — R be an increasing and positive monotone function on

(11, 12] and a continuous derivative ¥’ (t) on (i1, i2).

Theorem 3.1. Let o : [i1,i2] — R be a twice differentiable mapping such that
there exists real constants m, and m° so that me < o’ < m°. Then, the following

inequalities hold

i1+io
2 oE]: N N 2
(14) / L (% - 77) dn
i ¥
DE+1) |yt ~s ¢ A~ (it
< 277 (zlgzg)+;w9(b2) +H(ZIJQFZ2)—;¢Q(“) Q( 2 )
zlJQFzQ )
OZ_F N N
S/ m 2]%(77) <L1-5L2 _77) d’l’},
i

where ]-"f; is defined by Equation (13) and

(15)  Fu() = ((12) = (1 +12 — 1)) (0 + 22 — 1) + (0(r) — ()1 (v).
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Proof. With the aid of the Definition 2.6, we get

T(l+1) |y¢ ~s 0 /s
27, [ (tg2) 50 202) “I(—“??)—;w"(“)}

= Kb [ (602 = 00 o)

+ /22 () — ()" ¥ (m)an) dn}
L1+ig
(16) = i (¥ (12) = (1 + 11 —m) " (11 + 12 — 0) Bl + 12 —n) dn
27,0 ),

w7 W= ) 0 gt i)

htis
= ik [0 (2) =¥ (i1 + 12 =) 7! (1 + 12— )

v S

@ m) = v @) O] (em) + 01+ 22— m) dn
=k [T Fum)lot) + o+ —n)] dy

v S

an 5 [fw?) 00i2) + gy 000 >] - o(42)
:% \”*”ﬁp(n) [@(n)+g(z1+z2_n)_29 (%)} dn.

L1

By using the facts that

11+ia—t

ofin +1a— ) — o (152 = Aw ¢'(n) dn,
2
we have

(18) o(t) + 0(11 +12 — v) — 20 (1522
t l1+l2—t
= / () dn+ /  dn)dn

1+i2 l1tin
2 2
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l1+ila—t l1+ia—t
::/ eﬂmdn—/Q o'(l1+12—n)dn

i1tio l1+ig
2 2
l1+ia—1
= / X [0'(s) = o'(11 + 12 — )] dn.

L1~£L2

We also get
T
(19) 00 - dtia-v= [ Jan
l1+ig—t

By utilizing mo < ¢”(r) < m° (Vv € [i1,12]), with the aid of the equality (19), we

T T T
/ WMS/ MWMS/ m? d,
l1+ia—t l1+ia—1 l1+ia—1

obtain

which gives
mO(Qt — i1 — 22) < Ql(t) — Ql(zl + lg — ‘C) < m°(2t — i1 — 22)

From equality (18), we define

l1+i2—t l1+i2—t
ma [ @o—t—idns [T [ - i) d
i1+i9 i+l

2 2
l1+ig—t
<m° \ (2n — i1 — i2)dn.
L1~£L2

That is,

N 2 < N 2
(20)  mo (P42 —v)" < o(t) + oin + 15— v) — 20 (B52) <me (LhE )

LF(x)

Multiplying the inequality (20) by i and then integrating with respect to v on
the interval [21, %] , We posses
ZI;LQ 9
%ﬂ/ .@mw%¥—® dn
v Ju
il-glg
Sﬁ%/‘ ﬁMM[dm+p@r+b—n%—%(Q?%]dn
1
i1+ig

-%WK%?—@2M-

< m°L / 2
— £
2F, i

With help of the equation (17), we obtain the desired result. O
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Example 3.2. Define function ¢ : [0.1,1] — R by o(r) = 1 with [i1,22] = [0.1,1].
Without a doubt g is a twice differentiable map and
2
/! [¢]
me=1<p (t):t—3§10:m.

Now, by using (13), (15) and consider ¥(t) = t, we have

= o) —v (252)] + [ (242) —v )]
1.7742, ¢ =0.15,

— [ (1) = (5] + [ (&) — ¢ (0.1)]  ~{ 1.3416, £=0.50,
0.9366, £ = 0.95,

Fp(e) = ((2) = (i +12 = 0) 1 (0 42 = v) + () = ()1 (v)
4.3579, € =0.15,

- [(1 (11— r))’H} +((r) —(0.1) " ~ {31622, ¢ =0.50,
2.0937, €= 0.95,

for v = 0.5, and

Table 1. Numerical results of Inequalities (14) for £ € {0.15, 0.5, 0.95}.

v | Left side Inegs. Right side Left side Inegs. Right side Left side Inegs. Right side
(14) (14) (14)
£=0.15 £=0.5 £=0.95

0.1000 0.2910 2.9095 1.5924 0.2770 2.7700 0.9757 0.2676 2.6760 0.6427
0.2000 0.2910 2.9095 1.5924 0.2770 2.7700 0.9757 0.2676 2.6760 0.6427
0.3000 0.2910 2.9095 1.5924 0.2770 2.7700 0.9757 0.2676 2.6760 0.6427
0.4000 0.2910 2.9095 1.5924 0.2770 2.7700 0.9757 0.2676 2.6760 0.6427
0.5000 0.2910 2.9095 1.5924 0.2770 2.7700 0.9757 0.2676 2.6760 0.6427

nti ) 0.2909, £ = 0.15,

mol lit+ie ~ _
me! / Fu(n) (T n) dn~{ 02770, ¢=0.50,
vl 0.2676, ¢ =0.95,

1.5923, ¢=0.15,
<< 09756, ¢=0.50,
0.6426, ¢ =0.95,

Litig
2 \ \
~ 2]{5 Ty () {9(77)4—@@1—1-&2—17)_2@ <%)] dn
b Jig
2.9095, ¢=0.15, sy

IN

o s 2
2.7700, £ = 0.50, :g}f/ © Fu(n) (%—n) dn.
2.6760, ¢ = 0.95, v

Table 1 shows these results. Figures 1 and 2a, 2b, 2c show graphical representation
of the variables. Thus, Inequalities (14) in Thorem 3.1 hold.
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16
—O—ell-0.15
14% —8—\ell=0.5
\ell=0.95

0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 1. 2D-graph of F for v € [0.1,1] in Example 3.2.
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1
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(c) £=0.95

Figure 2. Graphical representation of inequalities (14) for £ € {0.15,0.50,0.95}.
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Corollary 3.3. If we choose 1 (vt) = v in Theorem 3.1, then inequalities (14) is

reduced to inequality (7).

Theorem 3.4. Let g : [i1,12] — R be a twice differentiable mapping such that there

exists real constants mo and m° so that m, < o” < m° . Then, we establish

2
(21) anf / Fy(m)(lz —n)(n —i1)dn

L1

< o(1)+o(2)  T(+1) 7 o Z)\(zQ) —i—]IZ o Z)\(zl)
>~ 2 2.7'—5 (H;LQ)‘Hw (H;LQ)*?T?
i1+ig

© 2 \ N
< o / Fy(n)(ia =n)(n —i1)dn
b S

where Fy, is stated by as in (15).

Proof. By the equation (16), we have

o(1)+o(i2)  T+1) |ye s £ /s
) M MGy )+ Y 50
Zl;b
. l L N N
G zﬁf{]) lo(n) + 0(i1 + 12 — n)] dn
L1
L1+ig
T 1Fyn)

= | o le() +elia) = (e(n) + e(ia + 2 = n))] dn.
L1

With help of the equalities
v i2

o(l1) — o(t) = —/ dmdn,  o(l2) —o(li +i2—1) = / o' (n) dn,

i1 l1+ia—t
we have

(23)
0l01) + 0002) — (0(0) + ol + 12 —0) = [ dan— [ " (n)

l1+ia—1 L1

i2

= /t o'+ 12 —n)dn — [ o'(n)dn = /t [0' (L1 + 12 —n) — &' ()] dn.

1 1 1

We also obtain
l1+ia—t
(21) ditiz-0-dw= [
T
By (24) and the condition that m, < ¢” < m°, we establish

(25) Mo (21 + o — Qt) < Ql(t) — Ql(zl + o — ‘C) <m° (21 + 19 — 2‘C) .
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From equality (23) and the inequality (25), we derive

T T T

/ mo (i1 +l2 — 2n)dn < / [0'(n) —d' (i +i2—n)] dn < / m° (i1 + iz — 2n)dn,
i1 i1 i1

ie.

mo(l2 — t)(v — i1) < o(l1) + o(l2) — (o(v) + o(i1 + 12 — ¥)) < m°(l2 — ¥)(v — i1).

LFy (e

Multiplying the inequality (26) by - o

and then integrating with respect to v on

liti2
2

the interval [Zl, ] , we derive

(26)
4o
2 mol(d P P } 041

/ %}" (n)dn < o( 1)-5@( 2) é}-;) [I[Ll-i— 2(i2) +E2—w9(bl)]

i1
Zl-glg . .

< | 0 Rl

i1

This completes the proof. O

Corollary 3.5. If we take 1)(v) = v in Theorem 3.4, then the inequality (21) reduce
to the inequality (9).

In the next theorem, we will examine the proof of Theorem 2.7 under different

conditions.

Theorem 3.6. Let o : [i1,i2] — R be a positive and differentiable function and
0 € Lq[i1,i2]. If condition (3) holds, then the following inequalities via fractional
integrals hold

11+ e ~/ ~s 2 2
(7 o)< or [Hfil?%wg(az) +ﬂ€zl?>_¢g(u)] < eliela),

)

Proof. Thank to of the equalities (17) and (18), we posses

{+1) . -
‘W(;()%;(il)}e [H€%>+7wg(b2) +IE%)_71&Q( ):| _ Q( 1+ 2)

i1+ig

2 I N N
:ﬁ/ fw(ﬁ) ()+Q(21+22—n)—29<%)] dn
L1
¢ % l1+il2— n
:ﬂ i) ]:1/1(77) /1+L2 —Q(Ll—l—LQ—y)] dv| dn
1 n
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which proves the first inequality in (27). Similarly, by the equalities (22) and (23),

we establish
o(l)+o(l2)  T(4+1) ~ v ~ry
24 B+ T 00
L1~522
= [T T Lot + oliz) — (elm) + ofia + 12 = )] dy
L1
Z1<522 n
LF, N N
:/l1 #g]) [/Ll [QI(L1+L2—I/)—Q/(I/)] dl/:| dn>0
The proof of the Theorem 3.6 completed. U

4. CONCLUSION

In the present paper, we presented new H-HI based on 1-Hilfer fractional integral

operators with the aid of the mappings whose twice differentiable are bounded.

Moreover, the ¢-Hilfer fractional H-HI was obtained under different conditions. As

can be seen from our article, curious readers can use the conditional m, < ¢”(r) < m°

for

all v € [i1, l2] instead of convexity, and they can try to find better bounds using

the condition (3). What’s more, mathematicians will be able to study different

types of fractional mappings. In addition, researchers will be able to derive new

ine

qualities using different types of convexities.
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