DOI QR코드

DOI QR Code

ON GENERALIZED SHEN'S SQUARE METRIC

  • Amr Soleiman (Department of Mathematics, Faculty of Science, Al Jouf University) ;
  • Salah Gomaa Elgendi (Department of Mathematics, Faculty of Science, Islamic University of Madinah)
  • Received : 2024.04.17
  • Accepted : 2024.08.26
  • Published : 2024.09.30

Abstract

In this paper, following the pullback approach to global Finsler geometry, we investigate a coordinate-free study of Shen square metric in a more general manner. Precisely, for a Finsler metric (M, L) admitting a concurrent π-vector field, we study some geometric objects associated with ${\widetilde{L}}(x, y)={\frac{(L+{\mathfrak{B}}^2)}L}$ in terms of the objects of L, where ${\mathfrak{B}}$ is the associated 1-form. For example, we find the geodesic spray, Barthel connection and Berwald connection of ${\widetilde{L}}(x,y)$. Moreover, we calculate the curvature of the Barthel connection of ${\tilde{L}}$. We characterize the non-degeneracy of the metric tensor of ${\widetilde{L}}(x,y)$.

Keywords

References

  1. A. Bejancu and H. Farran, Generalized Landsberg manifolds of scalar curvature, Bull. Korean Math. Soc. 37 (3) (2000), 543-550.
  2. S.-S. Chern and Z. Shen, Riemann-Finsler geometry, Nankai Tracts in Mathematics, 6, World Scientific, Hackensack, 2005.
  3. A. Frolicher and A. Nijenhuis, Theory of vector-valued differential forms, Ann. Proc. Kon. Ned. Akad. 59 (1956), 338-359. https://dx.doi.org/10.1016/s1385-7258(58)50058-4
  4. J. Grifone, Structure presque-tangente et connexions, I, Ann. Inst. Fourier Grenoble 22 (1) (1972), 287-334. https://dx.doi.org/10.5802/aif.407
  5. J. Grifone, Structure presque-tangente et connexions, II, Ann. Inst. Fourier Grenoble 22 (3) (1972), 291-338. https://dx.doi.org/10.5802/aif.431
  6. J. Klein and A. Voutier, Formes exterieures generatrices de sprays, Ann. Inst. Fourier, Grenoble, 18 (1) (1968), 241-260. https://doi.org/10.5802/aif.282
  7. M. Matsumoto, On Finsler spaces with Randers metric and special forms of important tensors, J. Math. Kyoto Univ., 14 (1974), 477-498. https://doi.org/10.1215/kjm/1250523171
  8. M. Matsumoto, On three-dimensional Finsler spaces satisfying the T-condition and BP - condition, Tensor N.S., 29 (1975), 13-20.
  9. M. Matsumoto and C. Shibata, On semi C-reducible, T-tensor= 0 and S4-likeness of Finsler spaces, J. Math. Kyoto Univ., 19 (2) (1979), 301-314. https://doi.org/10.1215/kjm/1250522434
  10. M. Matsumoto, The Berwald connection of Finsler with an (α, β)-metric, Tensor (NS), 50 (1991), 18-21.
  11. M. Matsumoto, Theory of Finsler spaces with (α, β)-metrics, Rep. Math. Phys., 31 (1991), 43-47. https://doi.org/10.1016/0034-4877(92)90005-L
  12. R. Miron and M. Anastasiei, The geometry of Lagrange spaces: Theory and applications, Kluwer Acad. Publ., 59 (1994). https://doi.org/10.1007/978-94-011-0788-4_9
  13. Z. Shen and G. Civi Yildirim, On a class of projectively flat metrics with constant flag curvature, Can. J. Math., 60:2 (2008), 443-456. Zbl 1157.53014. https://doi.org/10.4153/cjm-2008-021-1
  14. Z. Shen and C. Yu, On Einstein square metrics, Publ. Math. Debrecen, 85 (3-4) (2014), 413-424. https://doi.org/10.5486/pmd.2014.6015
  15. A. Soleiman, Recurrent Finsler manifolds under projective change, Int. J. Geom. Meth. Mod. Phys., 13 (2016), 1650126 (10 pages). https://doi.org/10.1142/s0219887816501267
  16. A. Soleiman and S. G. Elgendi, The geometry of Finsler spaces of Hp-scalar curvature, Differential Geometry - Dynamical Systems, 22 (2020), 254-268.
  17. S. G. Elgendi and A. Soleiman, An intrinsic proof of Numata's theorem on Landsberg spaces, J. Korean Math. Soc. 61 (1), (2023), 149-160. https://doi.org/10.4134/JKMS.j230263
  18. Z.I. Szabo, Positive definite Finsler spaces satisfying the T-condition are Riemannian, Tensor N.S., 35 (1981), 247-248.
  19. J. Szilasi, R.L. Lovas and D.Cs. Kertesz, Connections, Sprays and Finsler Structures, World Scientific, 2014. https://doi.org/10.1142/8659
  20. S. Tachibana, On Finsler spaces which admit concurrent vector field, Tensor, N. S., 1 (1950), 1-5.
  21. A. A. Tamim, Special Finsler manifolds, J. Egypt. Math. Soc., 10(2) (2002), 149-177.
  22. Nabil L. Youssef, S. H. Abed and A. Soleiman, Cartan and Berwald connections in the pullback formalism, Algebras, Groups and Geometries, 25 (2008), 363-384. arXiv: 0707.1320 [math. DG].
  23. Nabil L. Youssef, S. H. Abed and A. Soleiman, Concurrent π-vector fields and eneregy β-change, Int. J. Geom. Meth. Mod. Phys., 06 (2011). https://doi.org/10.1142/S0219887809003904
  24. Nabil L. Youssef, S. H. Abed and A. Soleiman, A global approach to the theory of special Finsler manifolds, J. Math. Kyoto Univ., 48 (2008), 857-893. arXiv: 0704.0053 [math. DG]. https://doi.org/10.1215/kjm/1250271321
  25. Nabil L. Youssef, S. H. Abed and A. Soleiman, A global approach to the theory of connections in Finsler geometry, Tensor, N. S., 71 (2009), 187-208. arXiv: 0801.3220 [math.DG]. 0801
  26. Nabil L. Youssef, S. H. Abed and A. Soleiman, Geometric objects associated with the fundamental connections in Finsler geometry, J. Egypt. Math. Soc., 18 (2010), 67-90. arXiv: 0805.2489 [math.DG].
  27. Nabil L. Youssef and S. G. Elgendi, New Finsler package, Comput. Phys. Commun., 185 (3) (2014), 986-997. https://doi.org/10.1016/j.cpc.2013.10.024
  28. Nabil L. Youssef, S. G. Elgendi and Ebtsam H. Taha, Semi-concurrent vector fields in Finsler geometry, Differ. Geom. Appl., 65 (2019), 1-15. https://doi.org/10.1016/j.difgeo.2019.02.011