• 제목/요약/키워드: M/G set

검색결과 545건 처리시간 0.033초

에지 고장이 있는 Restricted Hypercube-Like 그래프의 해밀톤 경로 (Hamiltonian Paths in Restricted Hypercube-Like Graphs with Edge Faults)

  • 김숙연;전병태
    • 정보처리학회논문지A
    • /
    • 제18A권6호
    • /
    • pp.225-232
    • /
    • 2011
  • Restricted Hypercube-Like(RHL) 그래프는 교차큐브, 뫼비우스큐브, 엠큐브, 꼬인큐브, 지역꼬인큐브, 다중꼬인큐브, 일반꼬인큐브와 같이 유용한 상호연결망들을 광범위하게 포함하는 그래프군이다. 본 논문에서는 $m{\geq}4$ 인 m-차원 RHL 그래프 G에 대해서 임의의 에지 집합 $F{\subset}E(G)$, ${\mid}F{\mid}{\leq}m-2$, 가 고장일 때, 고장 에지들을 제거한 그래프 $G{\setminus}F$는 임의의 서로 다른 두 정점 s와 t에 대해서 dist(s, V(F))${\neq}1$ 이거나 dist(t, V(F))${\neq}1$이면 해밀톤 경로가 있음을 보인다. V(F)는 F에 속하는 에지들의 양 끝점들의 집합이고 dist(v, V(F))는 정점 v와 집합 V(F)의 정점들 간의 최소 거리이다.

THE EXISTENCE OF SEMIALGEBRAIC SLICES AND ITS APPLICATIONS

  • Choi, Myung-Jun;Park, Dae-Heui;Suh, Dong-Youp
    • 대한수학회지
    • /
    • 제41권4호
    • /
    • pp.629-646
    • /
    • 2004
  • Let G be a compact semialgebraic group and M a semi-algebraic G-set. We prove that there exists a semialgebraic slice at every point of M. Moreover M can be covered by finitely many semialgebraic G-tubes. As an application we give a different proof that every semialgebraic G-set admits a semi algebraic G-embedding into some semialgebraic orthogonal representation space of G, which has been proved in [15].

ON ERDŐS CHAINS IN THE PLANE

  • Passant, Jonathan
    • 대한수학회보
    • /
    • 제58권5호
    • /
    • pp.1279-1300
    • /
    • 2021
  • Let P be a finite point set in ℝ2 with the set of distance n-chains defined as ∆n(P) = {(|p1 - p2|, |p2 - p3|, …, |pn - pn+1|) : pi ∈ P}. We show that for 2 ⩽ n = O|P|(1) we have ${\mid}{\Delta}_n(P){\mid}{\gtrsim}{\frac{{\mid}P{\mid}^n}{{\log}^{\frac{13}{2}(n-1)}{\mid}P{\mid}}}$. Our argument uses the energy construction of Elekes and a general version of Rudnev's rich-line bound implicit in [28], which allows one to iterate efficiently on intersecting nested subsets of Guth-Katz lines. Let G is a simple connected graph on m = O(1) vertices with m ⩾ 2. Define the graph-distance set ∆G(P) as ∆G(P) = {(|pi - pj|){i,j}∈E(G) : pi, pj ∈ P}. Combining with results of Guth and Katz [17] and Rudnev [28] with the above, if G has a Hamiltonian path we have ${\mid}{\Delta}_G(P){\mid}{\gtrsim}{\frac{{\mid}P{\mid}^{m-1}}{\text{polylog}{\mid}P{\mid}}}$.

SEMIALGEBRAIC G CW COMPLEX STRUCTURE OF SEMIALGEBRAIC G SPACES

  • Park, Dae-Heui;Suh, Dong-Youp
    • 대한수학회지
    • /
    • 제35권2호
    • /
    • pp.371-386
    • /
    • 1998
  • Let G be a compact Lie group and M a semialgebraic G space in some orthogonal representation space of G. We prove that if G is finite then M has an equivariant semialgebraic triangulation. Moreover this triangulation is unique. When G is not finite we show that M has a semialgebraic G CW complex structure, and this structure is unique. As a consequence compact semialgebraic G space has an equivariant simple homotopy type.

  • PDF

Some Cycle and Star Related Nordhaus-Gaddum Type Relations on Strong Efficient Dominating Sets

  • Murugan, Karthikeyan
    • Kyungpook Mathematical Journal
    • /
    • 제59권3호
    • /
    • pp.363-375
    • /
    • 2019
  • Let G = (V, E) be a simple graph with p vertices and q edges. A subset S of V (G) is called a strong (weak) efficient dominating set of G if for every $v{\in}V(G)$ we have ${\mid}N_s[v]{\cap}S{\mid}=1$ (resp. ${\mid}N_w[v]{\cap}S{\mid}=1$), where $N_s(v)=\{u{\in}V(G):uv{\in}E(G),\;deg(u){\geq}deg(v)\}$. The minimum cardinality of a strong (weak) efficient dominating set of G is called the strong (weak) efficient domination number of G and is denoted by ${\gamma}_{se}(G)$ (${\gamma}_{we}(G)$). A graph G is strong efficient if there exists a strong efficient dominating set of G. In this paper, some cycle and star related Nordhaus-Gaddum type relations on strong efficient dominating sets and the number of strong efficient dominating sets are studied.

서버상태의존 도착률을 갖는 M/G/l 모형의 최적 제어정책 (Optimal N-Policy of M/G/1 with Server Set-up Time under Heterogeneous Arrival Rates)

  • 백승진;허선
    • 산업경영시스템학회지
    • /
    • 제20권43호
    • /
    • pp.153-162
    • /
    • 1997
  • M/G/1 queueing system is one of the most widely used one to model the real system. When operating a real systems, since it often takes cost, some control policies that change the operation scheme are adopted. In particular, the N-policy is the most popular among many control policies. Almost all researches on queueing system are based on the assumption that the arrival rates of customers into the queueing system is constant, In this paper, we consider the M/G/1 queueing system whose arrival rate varies according to the servers status : idle, set-up and busy states. For this study, we construct the steady state equations of queue lengths by means of the supplementary variable method, and derive the PGF(probability generating function) of them. The L-S-T(Laplace Stieltjes transform) of waiting time and average waiting time are also presented. We also develop an algorithm to find the optimal N-value from which the server starts his set-up. An analysis on the performance measures to minimize total operation cost of queueing system is included. We finally investigate the behavior of system operation cost as the optimal N and arrival rate change by a numerical study.

  • PDF

On Comaximal Graphs of Near-rings

Characterization of Additive (m, n)-Semihyperrings

  • MIRAKILI, SAEED;DAVVAZ, BIJAN
    • Kyungpook Mathematical Journal
    • /
    • 제55권3호
    • /
    • pp.515-530
    • /
    • 2015
  • We say that (R, f, g) is an additive (m, n)-semihyperring if R is a non-empty set, f is an m-ary associative hyperoperation, g is an n-ary associative operation and g is distributive with respect to f. In this paper, we describe a number of characterizations of additive (m, n)-semihyperrings which generalize well-known results. Also, we consider distinguished elements, hyperideals, Rees factors and regular relations. Later, we give a natural method to derive the quotient (m, n)-semihyperring.