DOI QR코드

DOI QR Code

THE EXISTENCE OF SEMIALGEBRAIC SLICES AND ITS APPLICATIONS

  • Choi, Myung-Jun (Department of Mathematics Korea Advanced Institute of Science and Technology) ;
  • Park, Dae-Heui (Department of Mathematics College of Natural Sciences Chonnam National University) ;
  • Suh, Dong-Youp (Department of Mathematics Korea Advanced Institute of Science and Technology)
  • Published : 2004.07.01

Abstract

Let G be a compact semialgebraic group and M a semi-algebraic G-set. We prove that there exists a semialgebraic slice at every point of M. Moreover M can be covered by finitely many semialgebraic G-tubes. As an application we give a different proof that every semialgebraic G-set admits a semi algebraic G-embedding into some semialgebraic orthogonal representation space of G, which has been proved in [15].

Keywords

References

  1. Ergeb. Meth. Grenzgeb(3) v.36 Real Agebraic Geonmetry J.Bochnak;M.Coste;M.F,Roy
  2. Pure Appl. Math. v.46 Introduction to Compact Transformation Groups G,E,Bredon
  3. Math. Z. v.195 Quotient space for semialgebraic equivalence relation G.W.Brumfiel https://doi.org/10.1007/BF01161599
  4. Pacific J. Math. v.114 no.1 Separation, retraction and homotopy extension in semialgebraic spaces H.Delfs;M.Knebusch https://doi.org/10.2140/pjm.1984.114.47
  5. Lecture Notes in Math. v.1173 Locally semialgebraic spaces H.Delfs;M.Knebusch
  6. Proc. Amer. Math. Soc. v.1 Space with a compact Lie group of transformations A.M.Gleason https://doi.org/10.2307/2032430
  7. Proc. Sympos. Pure Math. v.29 Triangulations of algebraic varieties H.Hironaka https://doi.org/10.1090/pspum/029/0374131
  8. Ann. Scuola Norm. Sup. Pisa Cl. Sci. v.18 no.4 Triangulation of semi-analytic sets S.Lojasiewicz
  9. Ann. of Math. v.63 The existence of a slice D.Montgomery;C.T.Yang
  10. Ann. of Math. v.65 no.3 Equivariant embeddings in Euclidean space G.D.Mostow https://doi.org/10.2307/1970055
  11. J. Math. Mech. v.6 Imbedding of compact differential transformation groups in orthogonal representations R.S.Palais
  12. Mem. Amer. Math. Soc. v.36 The classification of G-spaces R.S.Palais
  13. Kyushu J. Math. v.50 no.1 Equivariant semi-algebraic triangulation of real algebraic G-varieties D.H.Park;D.Y.Suh https://doi.org/10.2206/kyushujm.50.179
  14. Topology Appl. v.115 Equivariant semialgebraic homotopies D.H.Park;D.Y.Suh https://doi.org/10.1016/S0166-8641(00)00061-4
  15. Math. Z. v.242 no.4 Linear embeddings of semialgebraic G-spaces D.H.Park;D.Y.Suh https://doi.org/10.1007/s002090100376
  16. Math. Z. v.183 Embedding semi-algebraic spaces R.Robson https://doi.org/10.1007/BF01176477

Cited by

  1. Proof of semialgebraic covering mapping cylinder conjecture with semialgebraic covering homotopy theorem vol.154, pp.1, 2007, https://doi.org/10.1016/j.topol.2006.03.017
  2. SLICE THEOREM FOR SEMIALGEBRAICALLY PROPER ACTIONS vol.37, pp.4, 2015, https://doi.org/10.5831/HMJ.2015.37.4.431