DOI QR코드

DOI QR Code

ON ERDŐS CHAINS IN THE PLANE

  • Received : 2020.11.06
  • Accepted : 2021.03.31
  • Published : 2021.09.30

Abstract

Let P be a finite point set in ℝ2 with the set of distance n-chains defined as ∆n(P) = {(|p1 - p2|, |p2 - p3|, …, |pn - pn+1|) : pi ∈ P}. We show that for 2 ⩽ n = O|P|(1) we have ${\mid}{\Delta}_n(P){\mid}{\gtrsim}{\frac{{\mid}P{\mid}^n}{{\log}^{\frac{13}{2}(n-1)}{\mid}P{\mid}}}$. Our argument uses the energy construction of Elekes and a general version of Rudnev's rich-line bound implicit in [28], which allows one to iterate efficiently on intersecting nested subsets of Guth-Katz lines. Let G is a simple connected graph on m = O(1) vertices with m ⩾ 2. Define the graph-distance set ∆G(P) as ∆G(P) = {(|pi - pj|){i,j}∈E(G) : pi, pj ∈ P}. Combining with results of Guth and Katz [17] and Rudnev [28] with the above, if G has a Hamiltonian path we have ${\mid}{\Delta}_G(P){\mid}{\gtrsim}{\frac{{\mid}P{\mid}^{m-1}}{\text{polylog}{\mid}P{\mid}}}$.

Keywords

References

  1. M. Bennett, A. Iosevich, and K. Taylor, Finite chains inside thin subsets of ℝd, Anal. & PDE 9 (2016), no. 3, 597-614. https://doi.org/10.2140/apde.2016.9.597
  2. J. Bourgain, A Szemeredi type theorem for sets of positive density in Rk, Israel J. Math. 54 (1986), no. 3, 307-316. https://doi.org/10.1007/BF02764959
  3. B. Bukh and A. Hubard, Space crossing numbers, Combin. Probab. Comput. 21 (2012), no. 3, 358-373. https://doi.org/10.1017/S096354831100040X
  4. V. Chan, I. Laba, and M. Pramanik, Finite configurations in sparse sets, J. Anal. Math. 128 (2016), 289-335. https://doi.org/10.1007/s11854-016-0010-3
  5. F. R. K. Chung, The number of different distances determined by n points in the plane, J. Combin. Theory Ser. A 36 (1984), no. 3, 342-354. https://doi.org/10.1016/0097-3165(84)90041-4
  6. F. R. K. Chung, E. Szemeredi, and W. T. Trotter, The number of different distances determined by a set of points in the euclidean plane, Discrete & Computational Geometry 7 (1992), no. 1, 1-11. https://doi.org/10.1007/BF02187820
  7. F. de Zeeuw, A short proof of rudnev's point-plane incidence bound, arXiv preprint arXiv:1612.02719, 2016.
  8. G. Elekes and M. Sharir, Incidences in three dimensions and distinct distances in the plane, Combin. Probab. Comput. 20 (2011), no. 4, 571-608. https://doi.org/10.1017/S0963548311000137
  9. P. Erdos, On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248-250. https://doi.org/10.2307/2305092
  10. K. J. Falconer, On the Hausdorff dimensions of distance sets, Mathematika 32 (1985), no. 2, 206-212 (1986). https://doi.org/10.1112/S0025579300010998
  11. K. J. Falconer and J. M. Marstrand, Plane sets with positive density at infinity contain all large distances, Bull. London Math. Soc. 18 (1986), no. 5, 471-474. https://doi.org/10.1112/blms/18.5.471
  12. N. Frankl and A. Kupavskii, Almost sharp bounds on the number of discrete chains in the plane, in 36th International Symposium on Computational Geometry (SoCG 2020). Schloss Dagstuhl-Leibniz-Zentrum fur Informatik, 2020.
  13. H. Furstenberg, Y. Katznelson, and B. Weiss, Ergodic theory and configurations in sets of positive density, in Mathematics of Ramsey theory, 184-198, Algorithms Combin., 5, Springer, Berlin, 1990. https://doi.org/10.1007/978-3-642-72905-8_13
  14. J. Garibaldi, A. Iosevich, and S. Senger, The Erdos distance problem, Student Mathematical Library, 56, American Mathematical Society, Providence, RI, 2011. https://doi.org/10.1090/stml/056
  15. L. Guth, Polynomial methods in combinatorics, University Lecture Series, 64, American Mathematical Society, Providence, RI, 2016. https://doi.org/10.1090/ulect/064
  16. L. Guth, A. Iosevich, Y. Ou, and H. Wang, On Falconer's distance set problem in the plane, Invent. Math. 219 (2020), no. 3, 779-830. https://doi.org/10.1007/s00222-019-00917-x
  17. L. Guth and N. H. Katz, On the Erdos distinct distances problem in the plane, Ann. of Math. (2) 181 (2015), no. 1, 155-190. https://doi.org/10.4007/annals.2015.181.1.2
  18. A. Iosevich, G. Jardine, and B. McDonald, Cycles of arbitrary length in distance graphs on 𝔽q, arXiv preprint arXiv:2101.00748, 2021.
  19. A. Iosevich and H. Parshall, Embedding distance graphs in finite field vector spaces, J. Korean Math. Soc. 56 (2019), no. 6, 1515-1528. https://doi.org/10.4134/JKMS.j180776
  20. A. Iosevich and J. Passant, Finite point configurations in the plane, rigidity and Erdos problems, Proc. Steklov Inst. Math. 303 (2018), no. 1, 129-139. https://doi.org/10.1134/s0081543818080114
  21. E. Landau, Uber die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate, 1909.
  22. N. Lyall and A. Magyar, Distance graphs and sets of positive upper density in ℝd, Anal. & PDE 13 (2020), no. 3, 685-700. https://doi.org/10.2140/apde.2020.13.685
  23. P. Moree and J. Cazaran, On a claim of Ramanujan in his first letter to Hardy, Exposition. Math. 17 (1999), no. 4, 289-311.
  24. L. Moser, On the different distances determined by n points, Amer. Math. Monthly 59 (1952), 85-91. https://doi.org/10.2307/2307105
  25. Y. Ou and K. Taylor, Finite point configurations and the regular value theorem in a fractal setting, arXiv preprint arXiv:2005.12233, 2020.
  26. E. A. Palsson, S. Senger, and A. Sheffer, On the number of discrete chains, arXiv preprint arXiv:1902.08259, 2019.
  27. M. Rudnev, On the number of classes of triangles determined by n points in ℝ2, arXiv preprint arXiv:1205.4865, 2012.
  28. M. Rudnev, Note on the number of hinges defined by a point set in ℝ2, Combinatorica 40 (2020), no. 5, 749-757. https://doi.org/10.1007/s00493-020-4171-4
  29. M. Sharir and N. Solomon, Incidences between points and lines on two-and three-dimensional varieties, Discrete & Computational Geometry 59 (2018), no. 1, 88-130. https://doi.org/10.1007/s00454-017-9940-5
  30. J. Solymosi and G. Tardos, On the number of k-rich transformations, in Computational geometry (SCG'07), 227-231, ACM, New York. https://doi.org/10.1145/1247069.1247111
  31. J. Solymosi and C. D. Toth, Distinct distances in the plane, Discrete & Computational Geometry 25 (2001), no. 4, 629-634. https://doi.org/10.1007/s00454-001-0009-z
  32. G. Tardos, On distinct sums and distinct distances, Adv. Math. 180 (2003), no. 1, 275-289. https://doi.org/10.1016/S0001-8708(03)00004-5
  33. T. Ziegler, Nilfactors of ℝm-actions and configurations in sets of positive upper density in ℝm, J. Anal. Math. 99 (2006), 249-266. https://doi.org/10.1007/BF02789447