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SOME REMARKS ON SEMIALGEBRAIC
TRANSFORMATION GROUPS

DAE HEUI PARK

Abstract. Let G be a semialgebraic group and M a proper semi-
algebraic G-set which is locally complete. In this paper we show
that the orbit space M/G has a semialgebraic structure such that
the orbit map is semialgebraic.

1. Introduction

A semialgebraic set is a subset of some R"™ defined by finite number
of polynomial equations and inequalities. Throughout this paper we
consider semialgebraic sets in R™ equipped with the subspace topology
induced by the usual topology of R™. A continuous map f: M — N
between semialgebraic sets M C R” and N C R" is called semialgebraic
if its graph is a semialgebraic set in R™ x R™. Note that all semialgebraic
maps are assumed to be continuous.

In this paper we discuss topological properties of semialgebraic sets
with semialgebraic actions of semialgebraic groups. A semialgebraic
set (G is called a semialgebraic group if it is a topological group whose
multiplication and inversion are semialgebraic. Let M be a semialgebraic
set and G a semialgebraic group. We say M is a semialgebraic G-set if
the action 0: G x M — M is semialgebraic. A semialgebraic G-set M is
called proper if it is a (topologically) proper G-space. Here is a natural
question. Does there exist a semialgebraic structure of the orbit space
M /G such that the orbit map is semialgebraic? We propose a partially
positive answer of this question as follows.
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Theorem 1.1. Let G be a semialgebraic group and M a proper semi-
algebraic G-set which is locally complete. Then M /G has a semialge-
braic structure such that the orbit map w: M — M /G is semialgebraic.

This theorem was proved by Brumfiel if G is compact in [3].

This paper is organized as follows. In Section 2 we review some
background materials on proper G-spaces. In Section 3 we prove The-
orems 1.1. It also contains some properties related to proper semialge-
braic G-sets. In Section 4 we give a construction of a section-like subset
of a proper semialgebraic G-set.

2. Proper G-spaces

We first give the definition and some basic properties of proper ac-
tions. For the details, we refer the reader to [6] and [5].

Definition 2.1. Let G be a topological group. A Hausdorff G-space
X is called by Palais [6] a proper G-space if each x € X has a neighbor-
hood U satisfying that for any y € X there exists a neighborhood V of
y such that the closure of the set

(U V) ={9€G|gUNV # 0}
is compact.

From now on, G denotes a Lie group. The followings are basic results
about proper actions.

Proposition 2.2 ([6]). Let X be a proper G-space which is com-
pletely regular, and let x € X. Then,

(1) the orbit G(z) is closed in X,

(2) the isotropy group G is compact,

(3) the evaluation map 0: G — G(z), 05(g) = gz is open,

(4) the map f: G/G; — G(x), f(9Gz) = gz is a homeomorphism,

(5) the orbit space X/G is completely regular,

(6) if H is a closed subgroup of G and Y is an H-invariant subspace
of X thenY is a proper H-space.

Definition 2.3. Let X be a G-space and H a closed subgroup of
G. A subset S of X is called an H-kernel if there exists a continuous
G-map f: GS — G/H such that f~(eH) = S, where e is the identity
of G. If, in addition, GS is open in X, then S is called H-slice in X.
For x € X a slice at x means a G -slice S in X such that x € S.
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When G is compact, it is well-known that a subset S of X is an H-
kernel if and only if GS is G-homeomorphic to G x i S(see [2]). We now
show that the same is true for any locally compact topological group G
if H is compact and X is first-countable. Note that every Lie group is
locally compact.

Proposition 2.4. Let X be a G-space and H a compact subgroup
of G. Let S C X be an H-kernel. Then the action 0: G x S — GS is
proper.

Proof. Since we do not need to mention about X, we assume X = GS.
Let f: X — G/H be a continuous G-map such that f~1(eH) = S.
Clearly S is closed in X. Let 7: G — G/H be the quotient map. Since
H is compact, 7 is a proper map. For a compact subset C' of X, its
image f(C) is compact in G/H, hence B = 7~ !(f(C)) is a compact
subset of G. Let B~! = {g7! € G | g € B}. Then §71(C) is a closed
subset of a compact subset B x §(B~! x C) of G x S, hence ~1(C) is
compact. This shows that @ is proper. O

We know that a proper map between two first-countable spaces is
closed.

Corollary 2.5. Let X be a first-countable G-spaces. Let H be a
compact subgroup of G. If S is an H-kernel of X, then GS is G-
homeomorphic to G x g S. Moreover, S/H is homeomorphic to GS/G.

Proof. Tt is elementary to show that the action 8: G x S — GS is
reduced to a bijective continuous map 0: G xS — GS. The action 6 is
proper by Proposition 2.4. Besides, since X is first-countable, it follows
that 6 is closed. So 6 is a closed map, and hence a homeomorphism.

We now show that S/H is homeomorphic to GS/G. The inclusion
map i: S < GS obviously induces a continuous map i: S/H — GS/G,
so we only need to construct the inverse map. Now the second projection
p: G xS — S induces a continuous map p: G xg S — S/H and we get
a continuous map f = pof~': GS — S/H which induces the desired
continuous map f: GS/G — S/H so that f =i~ O

The following proposition is one of the main results of [6].

Proposition 2.6. Let G be a Lie group and X a proper G-space.
Then for each x € X there exists a slice at x.
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3. proper semialgebraic G-sets

In this section we prove Theorems 1.1. We first gather some proper-
ties concerning semialgebraic sets and maps without proofs, which will
be used in this paper. For the details, we refer the reader to [1] and [4].

The class of semialgebraic sets in R™ is the smallest collection of
subsets containing all subsets of the form {z € R™ | p(z) > 0} for a
real valued polynomial p(z) = p(z1,...,z,), which is stable under finite
union, finite intersection and complement. Since every semialgebraic set
is a metric space, it is first-countable and completely regular. Recall
that a continuous map f: X — Y between semialgebraic sets X (C R™)

and Y (C R") is called semialgebraic if its graph is a semialgebraic set
in R™ x R"™.

Proposition 3.1. (1) Every semialgebraic set has a finite num-
ber of connected components which are also semialgebraic.

(2) Composition of two semialgebraic maps is semialgebraic.

(3) Let f: X — Y be a semialgebraic map. If A C X is semi-
algebraic, then its image f(A) is semialgebraic. If B C Y is
semialgebraic, then its inverse image f~'(B) is semialgebraic.

(4) If A C X is semialgebraic, then the closure A, the interior A and
the complement A° in X are all semialgebraic.

(5) Let f: X — @Q and g: X — Y be semialgebraic. Assume f is
surjective. If h: Q — Y is a continuous map such that ho f = g,
then h is semialgebraic.

(6) If f: X — Y is a semialgebraic map which is a homeomorphism,
then the inverse f~! is also semialgebraic.

The definition of a semialgebraic group is given obviously, i.e., a semi-
algebraic set G C R" is called a semialgebraic group if it is a topological
group such that the group multiplication and the inversion are semial-
gebraic. If H is a subgroup and semialgebraic subset of a semialgebraic
group G, then H is called a semialgebraic subgroup of G.

Proposition 3.2. (1) Every semialgebraic group has a Lie group
structure, and hence locally compact.
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(2) Every semialgebraic subgroup of a semialgebraic group is closed.

Proof. The results of this proposition were proved in the o-minimal
structures(see, [7, 8]). Since semialgebraic structure is a special case of
o-minimal structure, the proof is complete. O

Let M be a semialgebraic G-set. If G is compact then M is a proper
semialgebraic G-set. If G is noncompact but M is compact then M is
not proper.

For topological proper actions the following proposition appears in
[5, Section 1.3] whose proofs are straightforward.

Proposition 3.3. Let M be a proper semialgebraic G-set and let
x € M, then

(1) the isotropy subgroup G, is compact and semialgebraic,

(2) the orbit G(x) is a closed semialgebraic subset of M,

(3) the fixed point set M® = {x € M | gv = x for all g € G} is a
closed semialgebraic subset of M.

We now treat a semialgebraic structure of the orbit space of a proper
semialgebraic G-set.

Definition 3.4. Let M be a semialgebraic set and £ C M x M an
equivalence relation in M. Assume FE is a closed semialgebraic subset
of M x M. Let p;, po: E — M be the restrictions of the canonical
projections M x M — M to each factors. We call a closed semial-
gebraic subset Y of M is a section-like subset of M for E if the map
p1|p;1(y): pgl(Y) — M is proper and surjective.

Let M be a proper semialgebraic G-set. Then the associated action
Vet GX M — M x M, (g,z)— (9z,)

is proper, and hence closed. Let Eg be the semialgebraic equivalence
relation corresponding to the action, that is, Eq = {(gx,x) € M x M |
g € G, x € M}. Since ¥, is semialgebraic and closed, Eg = 0,(G x M)
is a closed semialgebraic subset of M x M. For each open semialgebraic
subset U of M, the set pl(pQ_I(U)) = GU isopen in M. Thus E¢ is open
over M(cf. [10, Lemma 6.1]). Therefore E¢ is a closed semialgebraic
equivalence relation on M which is open over M.

The following proposition tell us when a semialgebraic structure of
the orbit space exists.

Proposition 3.5. Let M be a semialgebraic G-set. Then the follow-
ing are equivalent.
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(1) M/G has a semialgebraic structure such that the orbit map m: M —
M /G is semialgebraic.
(2) There exists a section-like subset of M for E¢.
If these conditions are satisfied, the inclusion Y < M induces a
semialgebraic homeomorphism Y/Ey — M/G = M/Eq where Ey =
Egn (Y xY).

Proof. See Theorem 5.1 and Corollary 7.3 of [10]. O

We now prove Theorem 1.1.

Proof of Theorem 1.1. By Theorem 6.2 of [10], M /G has a semialgebraic
structure S(which is not necessarily affine) such that the orbit map
n': M — S is semialgebraic and continuous. By Proposition 2.2(5)
the orbit space M/G is regular, so is S. By Theorem 1 of [9] there
exist a semialgebraic set Z C R* and a semialgebraic homeomorphism
¢: S — Z. Therefore Z is a desired semialgebraic structure of M/G.
O

From Theorem 1.1 and Proposition 3.5 we have the following corol-
lary.

Corollary 3.6. Let M be a proper semialgebraic G-set which is
locally complete. Then there is a section-like subset Y of M.

In Section 4 we construct a section-like subset of M.

4. Some remarks

If M is a proper semialgebraic G-set which is locally complete, then
there exists a section-like subset Y of M (Corollary 3.6). In this sec-
tion we construct Y. Before we do this, let us investigate some of the
properties related with section-like sets.

Proposition 4.1. Let Y be a section-like subset of a proper semial-
gebraic G-set M, then the action 0: G X Y — M is proper.

Proof. Note that

py (V) = {(zmy) €Eg|lycY}
= {(9y,y) EM xM|geG, yeY}

Let h denote the restriction p1|p2_1(y): py (YY) — M of p; to py ' (Y).
Then h(p5(¥)) = Uyey G(y).
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To show that 6 is proper, let C' be a compact subset of M. Since h
is proper, the set A := pa(h~1(C)) is a compact subset of Y. Note that
Y C)={(9y,y) E M x M |y €Y, gy € C, g€ G}, hence we have

A={yeY |gyeC for some g € G}.
On the other hand
0~1C) ={(9,y) e GXY | gy e C}.

Thus 0~1(C) is a subset of ((4,C)) x A. Since §~1(C) is a closed subset
of compact set (AU C,AUC)) x A, it is compact, and hence 6 is
proper. ]

Note that a semialgebraic set is locally complete if and only if it is
locally compact.

Proposition 4.2. Let M be a proper semialgebraic GG-set which is
locally complete, and let Y be a section-like subset of M. Then the
restriction wly: Y — M /G of the orbit map is proper.

Proof. First, we show that w|'(z) is compact for all z € M/G. For
2z € M/G, let x be a point of 771(2). Then we have

Ty (=) = Y na () = Y N Gle) = pa(h ™ (@)):

Hence 7|;'(2) is compact.

Next, to prove that 7|y is closed by showing that if {y, } is a sequence
in Y such that {m(y,)} converges to some z € M /G, then there exists a
convergent subsequence of y, which converges to an element in Y. To
show this, let {y,} be a sequence in Y such that {7 (y,)} converges to
z € M/G. Choose x in 7|, (2). Since M is locally complete, we can take
a compact neighborhood U of x in M. For simplicity we may assume
that 7(y,) € w(U) for all n. Since pa(h~(U)) is compact and y, €
p2(h~Y(U)) for all n, the sequence {y,} has a convergent subsequence
which converges to an element in Y. O

Proposition 4.3. Let M be a semialgebraic G-set and H a compact
semialgebraic subgroup of G. Let S C M be a semialgebraic H-kernel.
Then S is a section-like subset of the semialgebraic G-set GS. Moreover
S/H is semialgebraically homeomorphic to GS/G.

Proof. First we show that h = p1|p2_1(5): pgl(S) — GS is proper and

surjective. Since p;*(S) = {(9y,y) | g € G,y € S} and h(gy,y) = gy,
the map h is surjective. For a compact subset C' of G S, its inverse image
h=1(C) = {(9y,y) € p3 *(S) | gy € C} is a closed subset of C' x D where
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D={yeM|gycC}=m(0C)),0: GxS — GS is the action, and
mo: G x S — § is the projection to the second factor. Since 6 is proper
by Proposition 2.4, D is compact, and hence h~!(C) is compact.

The last statement follows from Corollary 2.5 since the homeomor-
phism S/H — GS/G is obviously semialgebraic. O

We now give a specific construction of a section-like subset of a proper
semialgebraic G-set.

Theorem 4.4. Let M be a proper semialgebraic G-set which is lo-
cally complete. Then there exists a section-like subset Y of M such that
Y = S where S is the image of a (noncontinuous) semialgebraic cross
section of the orbit map m: M — M/G.

Proof. We may assume that M is a closed subset of R™. Indeed, let
M be a semialgebraic set which is not closed in R™. Since M is locally
complete, the set U = (R™ — M) U M is an open semialgebraic subset of
R™ where M is the closure of M in R". For each z € R", we define the

distance from x to R™ — U by the equation
dist(z,R" —U) =inf{|lx —y|| |y e R" = U)}.
Then the map

)
© dist(z, R — U)

is a semialgebraic embedding such that f(M) is a closed semialgebraic
subset of R™*1,

Since M is a proper G-space, for each x € M, the orbit G(x) is closed
in M, and hence it is closed in R™. From each orbit G(x) choose a point
s(z) which is closest to the origin 0 of R™. Such s(z) exists because
G(z) is closed in R™. If there are more than one such points, choose a
point whose coordinate is the smallest with respect to the lexicographical
order of the coordinates of R™. Then the set-theoretic map s: M — M,
x — s(x) may not be continuous but its graph is semialgebraic. Indeed,
first consider a semialgebraic set

Zo={(z.y) eR*™|3g € Gy =gz and Vg € G |lyl]* < [lg'z[*}.

f: M =R flz) = (

Next, from Zj, we obtain a new semialgebraic set
Z1 = {(x7y1>"'7yn) € ZO | v(xazla" . 7zn) S ZO U1 < Zl}-
Continue the process, we obtain semialgebraic sets

Zi-l—l == {(x73/1> BRI 73/n) € Z’L ’ V(.I',Zl, .. '7Zn) € ZZ Yi+1 S Z’i+1}
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for i =0,...,n — 1. Then the semialgebraic set Z, is the graph of s, so
it follows that the image S = {s(y) | y € M} is a semialgebraic subset
of M.

Let Y denote the closure of S in M. Then Y is a closed semi-
algebraic subset of M. We claim that Y is section-like. Let h =
p1|p2_1(y): pgl(Y) — M. The subjectivity of p1|p2_1(y) is clear. We
now prove h is proper. Let C be a compact subset of M. Since h
is continuous, h~1(C) is closed. To show that h~!(C) is bounded it
is enough to show that both p;(h=1(C)) and pa(h~1(C)) are bounded.
Clearly p1(h~1(C)) = C is bounded. On the other hand, there is a
positive real number r such that ||z| < r for all z € C. For x € C,
pa(h™!(z)) = G(x)NY. Let y € pa(h~'(x)), then y = gx for some
g € G. Since Y = S, there is a sequence {z,} in S which converges
to y. Then {g~'2,} converges to z. From the definition of the set S,
lzall < llg~ 2nll < ||2]| + 1 for sufficiently large n. Since {z,} converges
toy, lyll < |lz]| +1 < r+ 1. Thus pa(h~1(x)) is bounded, so it follows
that pe(h~1(C)) is bounded. O

According to Proposition 3.5, Theorem 4.4 gives another proof of
Theorem 1.1.

From Propositions 3.5 and 4.2 and Theorem 4.4 we have the following
theorem.

Theorem 4.5. Let M be a proper semialgebraic G-set which is lo-
cally complete. Then we obtain the following:

(1) There exists a closed, semialgebraic, section-like subset Y of M
for E¢, and thus Y/Ey has a semialgebraic structure such that
the restriction of the quotient map Y — Y/FEy is semialgebraic
and proper, where Ey = Eg N (Y xY).

(2) Hence M /G has a semialgebraic structure such that the orbit map
m: M — M/G is semialgebraic. Moreover, the inclusion Y <
M induces a semialgebraic homeomorphism Y/Ey — M/G(=
M/Egq).

If G is compact, we can take Y = M, thus it is clear that M /G has
a semialgebraic structure, which is one of the main results of [3].
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