DOI QR코드

DOI QR Code

EQUIVARIANT SEMIALGEBRAIC EMBEDDINGS

  • Park, Dae Heui (Department of Mathematics Chonnam National University)
  • Received : 2021.12.08
  • Accepted : 2022.01.21
  • Published : 2022.02.15

Abstract

Let G be a semialgebraic group not necessarily compact. Let M be a proper semialgebraic G-set whose orbit space has a semialgebraic structure. In this paper, we prove the embeddability of M into a G-representation space when G is linear.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT and Future Planning(NRF-2017R1E1A1A03070567).

References

  1. J. Bochnak, M. Coste, and M.-F. Roy, Real Agebraic Geometry, volume 36 of Erg. der Math. und ihrer Grenzg, Springer-Verlag, Berlin Heidelberg, 1998.
  2. T. Brocker and T. tom Dieck, Representations of Compact Lie Groups, volume 98 of Graduate texts in Math., Springer-Verlag, New York, 1985.
  3. G. W. Brumfiel, Quotient space for semialgebraic equivalence relation, Math. Z., 195 (1987), 69-78. https://doi.org/10.1007/BF01161599
  4. M.-J. Choi, D. H. Park, and D. Y. Suh, The existence of semialgebraic slices and its applications, J. Korean Math. Soc., 41 (2004), 629-646. https://doi.org/10.4134/JKMS.2004.41.4.629
  5. H. Delfs and M. Knebusch, Separation, retraction and homotopy extension in semialgebraic spaces, Pacific J. Math., 114 (1984), no. 1, 47-71. https://doi.org/10.2140/pjm.1984.114.47
  6. H. Delfs and M. Knebusch, Locally Semialgebraic Spaces, volume 1173 of Lecture Notes in Math., Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.
  7. S. Kim and D. H. Park, Slice theorem for semialgebraically proper actions, Honnam Math. J., 37 (2015), no. 4, 431-440. https://doi.org/10.5831/HMJ.2015.37.4.431
  8. J. J. Madden and C. M. Stanton, One-dimensional Nash groups, Pacific. J. Math., 154 (1992), 331-344. https://doi.org/10.2140/pjm.1992.154.331
  9. G. D. Mostow, Equivariant embeddings in euclidean space, Ann. of Math., 65 (1957), no. 3, 432-446. https://doi.org/10.2307/1970055
  10. R. S. Palais, Imbedding of compact differential transformation groups in orthogonal representations, J. Math. Mech., 6 (1957), 673-678.
  11. R. S. Palais, The classification of G-spaces, Mem. Amer. Math. Soc., 36 (1960). https://doi.org/10.1090/memo/0258
  12. R. S. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math., 73 (1961), no. 2, 295-323. https://doi.org/10.2307/1970335
  13. D. H. Park, The equivalence conditions for semialgebraically proper maps, Honnam Math. J., 35 (2013), no. 2, 319-327. https://doi.org/10.5831/HMJ.2013.35.2.319
  14. D. H. Park, On orbit types of semialgebraically proper actions, Arch. Math., 101 (2013), no. 1, 33-41. https://doi.org/10.1007/s00013-013-0532-1
  15. D. H. Park, A note on semialgebraically proper maps, Ukrainian Math. J., 66 (2015), no. 9, 1414-1422. https://doi.org/10.1007/s11253-015-1020-5
  16. D. H. Park and D. Y. Suh, Linear embeddings of semialgebraic G-spaces, Math. Z., 242 (2002), 725-742. https://doi.org/10.1007/s002090100376
  17. Y. Peterzil, A. Pillay, and S. Starchenko, Definably simple groups in o-minimal structures, Trans. Amer. Math. Soc., 352 (2000), no. 10, 4397-4419. https://doi.org/10.1090/S0002-9947-00-02593-9
  18. Y. Peterzil, A. Pillay, and S. Starchenko, Linear groups definable in o-minimal structures, J. Algebra, 247 (2002), 1-23. https://doi.org/10.1006/jabr.2001.8861
  19. A. Pillay, On groups and fields definable in o-minimal structures, J. Pure Appl. Algebra, 53 (1988), 239-255. https://doi.org/10.1016/0022-4049(88)90125-9
  20. C. Scheiderer, Quotients of semi-algebraic spaces, Math. Z., 201 (1989), 249-271. https://doi.org/10.1007/BF01160681