DOI QR코드

DOI QR Code

WHICH WEIGHTED SHIFTS ARE M-HYPONORMAL?

  • Jee, Yun Hee (Department of Mathematics Chungnam National University)
  • Received : 2022.01.29
  • Accepted : 2022.02.18
  • Published : 2022.02.15

Abstract

Let α = {αn}n=0 be a weight sequence and let Wα denote the associated unilateral weighted shift on 𝑙2(Z+). In this paper we will investigate which weighted shift is M-hyponormal.

Keywords

References

  1. S. C. Arora, R. Kumar, M-hyponormal operators, Yokohama Math. J. 28 (1980), 41-44.
  2. S. C. Arora, J. K. Thukral, Conditions implying normality, Tamkang J. Math. 17 (1986), no. 4, 89-92.
  3. C. K. Fong, On M-hyponormal operators, Studia Math. 65 (1979), 1-5. https://doi.org/10.4064/sm-65-1-1-5
  4. J. S. Ham, S. H. Lee, W. Y. Lee, On M-hyponormal weighted shifts, J. Math. Anal. Appl. 286 (2003), 116-124. https://doi.org/10.1016/S0022-247X(03)00456-6
  5. S. V. Phadke, N. K.Thakare, M-hyponormal operators: invariant subspaces and spectral localization, Indian J. Pure Appl. Math. 8 (1977), no. 4, 487-496, 47B20.
  6. M. Radjabalipour, On majorization and normality of operators, Proc. Amer. Math. Soc. 62 (1977), no. 1, 105-110, 47B20. https://doi.org/10.1090/S0002-9939-1977-0430851-6
  7. J. G. Stampfli, Analytic extensions and spectral localization, J. Math. Mech. 16 (1966), 287-296.
  8. J. G. Stampfli, B. L. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant operators, Indiana Univ.. Math. J. 25 (1976), 359-365. https://doi.org/10.1512/iumj.1976.25.25031
  9. B. L. Wadhwa, M-hyponormal operators, Duke Math. J. 41 (1974), 655-660. https://doi.org/10.1215/S0012-7094-74-04168-4