On Comaximal Graphs of Near-rings

Patchirajulu Dheena
Department of Mathematics, Annamalai University, Annamalainagar - 608002, Tamilnadu, India
e-mail: dheenap@yahoo.com
Balasubramanian Elavarasan*
Department of Mathematics, K. S. R. College of Engineering, KSR Kalvinagar, Tiruchengode - 637209, Namakkal District, Tamilnadu, India
e-mail: belavarasan@gmail.com

Abstract. Let N be a zero-symmetric near-ring with identity and let $\Gamma(N)$ be a graph with vertices as elements of N, where two different vertices a and b are adjacent if and only if $\langle a\rangle+\langle b\rangle=N$, where $\langle x\rangle$ is the ideal of N generated by x. Let $\Gamma_{1}(N)$ be the subgraph of $\Gamma(N)$ generated by the set $\{n \in N:\langle n\rangle=N\}$ and $\Gamma_{2}(N)$ be the subgraph of $\Gamma(N)$ generated by the set $N \backslash v\left(\Gamma_{1}(N)\right)$, where $v(G)$ is the set of all vertices of a graph G. In this paper, we completely characterize the diameter of the subgraph $\Gamma_{2}(N)$ of $\Gamma(N)$. In addition, it is shown that for any near-ring, $\Gamma_{2}(N) \backslash M(N)$ is a complete bipartite graph if and only if the number of maximal ideals of N is 2 , where $M(N)$ is the intersection of all maximal ideals of N and $\Gamma_{2}(N) \backslash M(N)$ is the graph obtained by removing the elements of the set $M(N)$ from the vertices set of the graph $\Gamma_{2}(N)$.

1. Preliminaries

Throughout this paper N is a zero symmetric near-ring with identity. $M(N)$ denotes the intersection of all maximal ideals of $N, \operatorname{Max}(\mathrm{~N})$ denotes the set of all maximal ideals of $N,\langle x\rangle$ denotes the ideal of N generated by x and $v(G)$ denotes the set of all vertices of a graph G.

For any vertices x, y in a graph G, if x and y are adjacent, we denote it as $x \approx y$. A graph is said to be connected if for each pair of distinct vertices v and w, there is a finite sequence of distinct vertices $v_{0}=v, v_{2}, \cdots, v_{n}=w$ such that each pair $\left\{v_{i}, v_{i+1}\right\}$ is an edge. Such a sequence is said to be a path and the distance, $d(v, w)$, between connected vertices v and w is the length of the shortest path connecting them. The diameter of a connected graph is the supremum of the distances between vertices. The degree of a vertex v in G is the number of edges of G incident with v. Let G_{1} be a subgraph of a graph G and $v \in G_{1}$. Then $\operatorname{deg}_{G_{1}}(v)$ is the number of edges of G_{1} incident with v. An r-partite graph is one whose vertex set can be

[^0]partitioned into r subsets so that no edge has both ends in any one subset. Let V be the set of vertices of a graph G and $V_{1} \subseteq V$. Then $G \backslash V_{1}$ is the graph obtained by removing the vertices of the set V_{1} from the vertices set of the graph G. A complete r-partite graph is one in which each vertex is joined to every vertex that is not in the same subset. The complete bipartite (i.e., 2-partite) graph with part sizes m and n is denoted by $K_{m, n}$. A graph in which each pair of distinct vertices is joined by an edge is called a complete graph.

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs with disjoint vertices set V_{i} and edges set E_{i}. The join of G_{1} and G_{2} is denoted by $G=G_{1} \vee G_{2}$ with vertices set $V_{1} \cup V_{2}$ and the set of edges is $E_{1} \cup E_{2} \cup\left\{x \approx y: x \in V_{1}\right.$ and $\left.y \in V_{2}\right\}$. Following Mason [4], an ideal I of N is called completely reflexive if $a b \in I$ implies $b a \in I$ for $a, b \in N$. In [2], Beck considered $\Gamma(R)$ as a graph with vertices the elements of a commutative ring R, where two different vertices a and b are adjacent if and only if $a b=0$. He studied finitely colorable rings with this graph structure and in [1], Anderson and Naseer have made further studies of finitely colorable rings. In [6], Sharma and Bhatwadekar defined another graph srtucture on a commutative ring R with vertices the elements of R and where two distinct vertices a and b are adjacent if and only if $\langle a\rangle+\langle b\rangle=R$.

In this paper, we extend the graph structure of rings as defined by Sharma and Bhatwadekar and the results obtained by H. R. Maimani et al. [3] for commutative rings to near-rings (not necessarily commutative). Let N be a near-ring and let $\Gamma(N)$ be a graph with vertices the elements of N and where two different vertices a and b are adjacent if and only if $\langle a\rangle+\langle b\rangle=N$.

Let $\Gamma_{1}(N)$ be the subgraph of $\Gamma(N)$ generated by the set $\{n \in N:\langle n\rangle=N\}$ and $\Gamma_{2}(N)$ be the subgraphs of $\Gamma(N)$ generated by the set $N \backslash v\left(\Gamma_{1}(N)\right)$. Then clearly $\Gamma(N)=\Gamma_{1}(N) \vee \Gamma_{2}(N)$. If N is a commutative ring, then the set of vertices of $\Gamma_{1}(N)$ consists of unit elements of N. Other definitions and basic concepts in near-ring theory can be found in G.Pilz [5].

2. Main results

Theorem 2.1. If $\left\{P_{1}, P_{2}, \cdots, P_{n}\right\}$ is a finite family of prime ideals of N with $I \subseteq \cup_{i=1}^{n} P_{i}$ for any sub near-ring I of N, then $I \subseteq P_{i}$ for some i.
Proof. We may assume that I is not contained in the union of any collection on $n-1$ of the $P_{i}^{\prime} \mathrm{s}$. If so, we can simply replace n by $n-1$. Thus for each i, we can find an element $a_{i} \in I$ with $a_{i} \notin P_{1} \cup \cdots \cup P_{i-1} \cup P_{i+1} \cdots \cup P_{n}$. Take $n=2$, with $I \nsubseteq P_{1}$ and $I \nsubseteq P_{2}$. Then $a_{1} \in P_{1}, a_{2} \notin P_{1}$, and so $a_{1}+a_{2} \notin P_{1}$. Similarly, $a_{1} \notin P_{2}, a_{2} \in P_{2}$, and so $a_{1}+a_{2} \notin P_{2}$. Thus $a_{1}+a_{2} \notin I \subseteq P_{1} \cup P_{2}$, contradicting $a_{1}, a_{2} \in I$. Now assume that $n>2$ and suppose that $I \nsubseteq P_{i}$ for all i. Observe that $\left\langle a_{1}\right\rangle\left\langle a_{2}\right\rangle \cdots\left\langle a_{n-1}\right\rangle \subseteq P_{1} \cap P_{2} \cdots \cap P_{n-1}$, but $a_{n} \notin P_{1} \cup P_{2} \cdots \cup P_{n-1}$. Now for all $i=1,2, \cdots, n-\overline{1}$, we have $a_{i} \notin P_{n}$, and so $\left\langle a_{1}\right\rangle\left\langle a_{2}\right\rangle \cdots\left\langle a_{n-1}\right\rangle \nsubseteq P_{n}$. Then there exists $t \in\left\langle a_{1}\right\rangle\left\langle a_{2}\right\rangle \cdots\left\langle a_{n-1}\right\rangle$ such that $x=t+a_{n} \notin P_{n}$. Thus $x \in I$ and $x \notin P_{1} \cup P_{2} \cup \cdots \cup P_{n}$, a contradiction.
Lemma 2.2. Let N be a near-ring. Then the following conditions hold:
(i) $\Gamma_{1}(N)$ is a complete graph.
(ii) $a \in M(N)$ if and only if $d e g_{\Gamma_{2}(N)} a=0$.

Proof. (i) It is clear from definition.
(ii) Let $a \in M(N)$ and suppose $d e g_{\Gamma_{2}(N)} a \neq 0$, then there exists $b \in \Gamma_{2}(N)$ such that $\langle a\rangle+\langle b\rangle=N$. On the other hand there exists $M \in \operatorname{Max}(\mathrm{~N})$ with $b \in M$, and so $M=N$, a contradiction. Conversely, assume that $d e g_{\Gamma_{2}(N)} a=0$ and suppose that $a \notin M(N)$. Then there exists $M \in \operatorname{Max}(\mathrm{~N})$ such that $a \notin M$, and so $\langle a\rangle+M=N$. Therefore there exists $b \in M$ such that $\langle a\rangle+\langle b\rangle=N$, a contradiction.

Corollary 2.3([3], Lemma 2.1). Let R be a commutative ring with identity. Then the following hold:
(i) $\Gamma_{1}(R)$ is a complete graph.
(ii) $a \in J(R)$ if and only if $\operatorname{deg}_{\Gamma_{2}(R)} a=0$, where $J(R)$ denotes the Jacobson radical of R.
Proof. If R is commutative ring with identity, then $J(R)$ is $M(R)$.
Theorem 2.4. Let N be a near-ring. Then $\Gamma_{2}(N) \backslash M(N)$ is connected graph and $\operatorname{diam}\left(\Gamma_{2}(N) \backslash M(N)\right) \leq 3$.
Proof. Let $a, b \in \Gamma_{2}(N) \backslash M(N)$.
Case (i): If $\langle a\rangle\langle b\rangle \nsubseteq M(N)$, then $\langle\langle a\rangle\langle b\rangle\rangle \nsubseteq M(N)$, so there exists $x \in \Gamma_{2}(N) \backslash M(N)$ such that $\langle\langle a\rangle\langle b\rangle\rangle+\langle x\rangle=N$. Thus $\langle a\rangle+\langle x\rangle=N$ and $\langle b\rangle+\langle x\rangle=N$. So we have the path $a \approx x \approx b$, and so $d(a, b) \leq 2$.
Case (ii): If $\langle a\rangle\langle b\rangle \subseteq M(N)$, then $\operatorname{Max}(\mathrm{N})=\mathrm{S}_{\mathrm{a}} \cup \mathrm{S}_{\mathrm{b}}$, where $S_{a}=\{M \in$ $\operatorname{Max}(\mathrm{N}): \mathrm{a} \in \mathrm{M}\}$ and $S_{b}=\{M \in \operatorname{Max}(\mathrm{~N}) \quad: \mathrm{b} \in \mathrm{M}\}$. Since $a \notin M(N)$, there exists $x \in \Gamma_{2}(N)$ such that $\langle a\rangle+\langle x\rangle=N$. Then $x \notin M(N)$. Let $M \in \operatorname{Max}(\mathrm{~N})$ such that $b \notin M$. Then $x \notin M$, and so $\langle b\rangle\langle x\rangle \nsubseteq M(N)$. Therefore by Case (i), $d(b, x) \leq 2$, and so $d(a, b) \leq 3$.
Corollary 2.5([3], Theorem 3.1). Let R be a commutative ring with identity. Then $\Gamma_{2}(R) \backslash J(R)$ is connected graph and diam $\left(\Gamma_{2}(R) \backslash J(R)\right) \leq 3$.
Theorem 2.6. Let N be a near-ring. Then the following conditions are equivalent:
(i) $\Gamma_{2}(N) \backslash M(N)$ is a complete bipartite graph.
(ii) The cardinal number of the set $\operatorname{Max}(\mathrm{N})$ is 2.

Proof. i) \Rightarrow ii) Suppose that $\Gamma_{2}(N) \backslash M(N)$ is a complete bipartite graph with two parts V_{1} and V_{2}. Set $M_{1}=V_{1} \cup M(N)$ and $M_{2}=V_{2} \cup M(N)$. We claim that M_{1} and M_{2} are maximal ideals of N. Let $x, y \in M_{1}$.
Consider the following three cases:
Case (i): If $x, y \in M(N)$, then $x-y \in M_{1}$.
Case (ii): If $x \in M(N)$ and $y \in V_{1}$, then $x-y \notin M(N)$. If $\langle x-y\rangle=N$, then $\langle x\rangle+\langle y\rangle=N$, a contradiction. If $x-y \in M_{2}$, then $x-y \in V_{2}$, and so $\langle x-y\rangle+\langle y\rangle=N$. Thus $\langle x\rangle+\langle y\rangle=N$, a contradiction. Therefore $x-y \in V_{1} \subseteq M_{1}$. Case (iii): Assume that $x, y \in V_{1}$. If $x-y \in M(N)$, then there is nothing to prove. Otherwise $x-y \notin M(N)$. Then by same argument of Case (ii), we have $x-y \in M_{1}$. Let $x \in M_{1}$ and $n \in N$. If either $x \in M(N)$ or $n+x-n \in M(N)$, then M_{1} is a normal subgroup of N. So, we assume that $x \notin M(N)$ and $n+x-n \notin M(N)$. Since $\langle n+x-n\rangle \subseteq\langle x\rangle$, we have $\langle n+x-n\rangle \neq N$. If $n+x-n \in M_{2}$, then $n+x-n \in V_{2}$, and so $\langle n+x-n\rangle+\langle x\rangle=N$ which implies $N=\langle x\rangle$, a contradiction. Therefore $n+x-n \in V_{1} \subseteq M_{1}$. Let $n \in N$ and $x \in M_{1}$. If either $x \in M(N)$ or $x n \in M(N)$, then M_{1} is right ideal of N. Otherwise $x \notin M(N)$ and $x n \notin M(N)$.

Also $\langle x n\rangle \neq N$. Suppose that $x n \in M_{2}$. Then $x n \in V_{2}$, and so $\langle x n\rangle+\langle x\rangle=N$. Thus $\langle x\rangle=N$, a contradiction. So $x n \in M_{1}$. Let $n, n_{1} \in N$ and let $x \in M_{1}$. If either $x \in M(N)$ or $n\left(n_{1}+x\right)-n n_{1} \in M(N)$, then M_{1} is a left ideal of N. Otherwise $x \notin M(N)$ and $n\left(n_{1}+x\right)-n n_{1} \notin M(N)$. Also $\left\langle n\left(n_{1}+x\right)-n n_{1}\right\rangle \neq N$. Suppose that $n\left(n_{1}+x\right)-n n_{1} \in M_{2}$. Then $n\left(n_{1}+x\right)-n n_{1} \in V_{2}$, and so $\langle x\rangle+\left\langle n\left(n_{1}+x\right)-n n_{1}\right\rangle=N$ which implies $N=\langle x\rangle$, a contradiction. So $n\left(n_{1}+x\right)-n n_{1} \in M_{1}$. So M_{1} is an ideal of N. Let $x \in N \backslash M_{1}$. Then $\langle x\rangle+\langle y\rangle=N$ for all $y \in V_{1}$ which implies $\langle x\rangle+M_{1}=N$, and so M_{1} is a maximal ideal of N.
With the same argument, M_{2} is a maximal ideal of N. Now, if $M \in \operatorname{Max}(\mathrm{~N})$, then $M \subseteq M_{1} \cup M_{2}$, and so $M=M_{1}$ or $M=M_{2}$ by Theorem 2.1.
ii) \Rightarrow i) Let $\operatorname{Max}(\mathrm{N})=\left\{\mathrm{M}_{1}, \mathrm{M}_{2}\right\}$. Thus the vertices set of $\Gamma_{2}(N) \backslash M(N)$ is equal to the set $\left(M_{1} \backslash M_{2}\right) \cup\left(M_{2} \backslash M_{1}\right)$. Let $a \in M_{1} \backslash M_{2}$ and $b \in M_{2} \backslash M_{1}$. Then $\langle a\rangle+\langle b\rangle \nsubseteq M_{1} \cup M_{2}$ and so $\langle a\rangle+\langle b\rangle=N$.

Corollary 2.7([3], Theorem 2.2). Let R be a commutative ring with identity. Then the following are equivalent:
(i) $\Gamma_{2}(R) \backslash J(R)$ is a complete bipartite graph.
(ii) The cardinal number of the set $\operatorname{Max}(\mathrm{R})$ is equal 2.

Theorem 2.8. Let N be a near-ring and let $n>1$. Then the following hold:
(i) If $|\operatorname{Max}(\mathrm{N})|=n<\infty$, then the graph $\Gamma_{2}(N) \backslash M(N)$ is n-partite.
(ii) If the graph $\Gamma_{2}(N) \backslash M(N)$ is n-partite, then $|\operatorname{Max}(\mathrm{N})| \leq n$. In this case if the graph $\Gamma_{2}(N) \backslash M(N)$ is not $(n-1)$-partite, then $|\operatorname{Max}(\mathrm{N})|=n$.
Proof. The proof is similar to that of Proposition 2.3 of [3].
Theorem 2.9. Let N be a near-ring with $|\operatorname{Max}(\mathrm{N})| \geq 2$. Then the following hold:
(i) If $\Gamma_{2}(N) \backslash M(N)$ is a complete n-partite graph, then $n=2$.
(ii) If there exists a vertex of $\Gamma_{2}(N) \backslash M(N)$ which is adjacent to every other vertex, then $N \cong \mathbb{Z}_{2} \times F$, where $\mathbb{Z}_{2}=\{0,1\}$ is the ring under addition modulo 2 and multiplication modulo 2; F is a simple near-ring.
Proof. (i) Let M_{1}, M_{2} be two maximal ideals of N. Since the elements of $M_{i} \backslash M(N)$ are not adjacent, and at least one element of $M_{1} \backslash M(N)$ is adjacent to $M_{2} \backslash M(N)$, so $M_{1} \backslash M(N)$ and $M_{2} \backslash M(N)$ are subsets of two distinct parts of $\Gamma_{2}(N)$. Suppose $M(N) \subset M_{1} \cap M_{2}$. Then there exists $x \in M_{1} \cap M_{2}$ with $x \notin M(N)$, and so x belongs to $M_{1} \backslash M(N)$ and $M_{2} \backslash M(N)$, a contradiction to $M_{1} \backslash M(N)$ and $M_{2} \backslash M(N)$ are subsets of two distinct parts of $\Gamma_{2}(N)$. Thus $M(N)=M_{1} \cap M_{2}$ and hence $|\operatorname{Max}(\mathrm{N})|=2$. By Theorem 2.6, we have $n=2$.
(ii) Let $x \in \Gamma_{2}(N) \backslash M(N)$ such that x is adjacent to every other vertex. Clearly $\langle x\rangle \subseteq M$ for some maximal ideal M of N. Suppose $y(\neq 0) \in M(N)$. Then $x+y \notin M(N)$ and $\langle x+y\rangle \neq N$ which implies $\langle x\rangle+\langle x+y\rangle=N$, and so $M=N$, a contradiction. So $M(N)=0$. Now, let $y \in M$ with $y \notin\{0, x\}$. Then $N=\langle x\rangle+\langle y\rangle \subseteq M$, a contradiction. Therefore $M=\{0, x\}=\langle x\rangle$ is a maximal ideal of N. Thus for each $s(\neq 0) \in \Gamma_{2}(N)$, having $\langle x\rangle+\langle s\rangle=N$ implies $N /\langle x\rangle \cong\langle s\rangle$. Thus $\langle s\rangle=F$ is simple and hence $N \cong \mathbb{Z}_{2} \times F$.

Corollary 2.10([3], Proposition 2.4). Let R be a commutative ring with $|\operatorname{Max}(\mathrm{R})| \geq$ 2. Then the following hold:
(i) If $\Gamma_{2}(R) \backslash J(R)$ is a complete n-partite graph, then $n=2$.
(ii) If there exists a vertex of $\Gamma_{2}(R) \backslash J(R)$ which is adjacent to every other vertex, then $R \cong \mathbb{Z}_{2} \times F$, where F is a field.
Lemma 2.11. Let N be a near-ring. Then $\operatorname{diam}\left(\Gamma_{2}(\mathrm{~N}) \backslash \mathrm{M}(\mathrm{N})\right)=1$ if and only if $N \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
Proof. The proof is similar to that of Lemma 3.2 of [3].
Theorem 2.12. Let N be a near-ring with atleast two maximal ideals and let $M(N)$ be a completely reflexive ideal of N. Then $\operatorname{diam}\left(\Gamma_{2}(\mathrm{~N}) \backslash \mathrm{M}(\mathrm{N})\right)=2$ if and only if one of the following holds:
(i) $M(N)$ is a prime ideal.
(ii) $|\operatorname{Max}(\mathrm{N})|=2$ and $N \nsubseteq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Proof. Let $M(N)$ be prime and let $a, b \in \Gamma_{2}(N) \backslash M(N)$. Then $\langle a\rangle\langle b\rangle \nsubseteq M(N)$, and so by the same argument as in Theorem 2.4, there exists $x \in \Gamma_{2}(N) \backslash M(N)$ such that $a \approx x \approx y$ is a path. If $\operatorname{diam}\left(\Gamma_{2}(\mathrm{~N}) \backslash \mathrm{M}(\mathrm{N})\right)=1$, then by Lemma 2.11, $N \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. But $M\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$ is not a prime ideal, a contradiction.
Next, let $|\operatorname{Max}(\mathrm{N})|=2$ and $N \nsubseteq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, then by Theorem 2.6, $\Gamma_{2}(N) \backslash M(N)$ is a complete bipartite graph where at least one of the parts has at least two elements. So $\operatorname{diam}\left(\Gamma_{2}(\mathrm{~N}) \backslash \mathrm{M}(\mathrm{N})\right)=2$.

Conversely, let $\operatorname{diam}\left(\Gamma_{2}(\mathrm{~N}) \backslash \mathrm{M}(\mathrm{N})\right)=2$ and $M(N)$ is not prime. Let $a, b \notin$ $M(N)$, but $\langle a\rangle\langle b\rangle \subseteq M(N)$. We show that a and b are adjacent. Otherwise there exists $t \in \Gamma_{2}(N)$ such that $\langle a\rangle+\langle t\rangle=\langle b\rangle+\langle t\rangle=N$. Then there are $x_{1} \in\langle a\rangle ; x_{1}^{\prime} \in\langle b\rangle$ and $y_{1}, y_{1}^{\prime} \in\langle t\rangle$ such that $x_{1}+y_{1}=x_{1}^{\prime}+y_{1}^{\prime}=1$ which implies $x_{1} x_{1}^{\prime}+y_{1} x_{1}^{\prime}+y_{1}^{\prime}=1$. Since $x_{1} x_{1}^{\prime} \in\langle a\rangle\langle b\rangle$ and $y_{1} x_{1}^{\prime}+y_{1}^{\prime} \in\langle t\rangle$, we have $\langle\langle a\rangle\langle b\rangle\rangle+\langle t\rangle=N$, which implies $\langle a\rangle\langle b\rangle \nsubseteq M(N)$, a contradiction. Therefore $\langle a\rangle+\langle b\rangle=N$, and so $x+y=1$ for some $x \in\langle a\rangle$ and $y \in\langle b\rangle$.
Set $S=N / M(N)$ and $a_{1}=x+M(N)$ and $b_{1}=y+M(N)$. Then $a_{1} b_{1}=0$ and $a_{1}+b_{1}=1_{S}$. Since $M(N)$ is completely reflexive, we have $\left\langle a_{1}\right\rangle\left\langle b_{1}\right\rangle=0$. If $z \in\left\langle a_{1}\right\rangle \cap\left\langle b_{1}\right\rangle$, then $\langle z\rangle^{2} \subseteq\left\langle a_{1}\right\rangle\left\langle b_{1}\right\rangle=0$. Since $M(N)$ in semiprime ideal of N, we have $z=0$. Thus $\left\langle a_{1}\right\rangle \cap\left\langle\bar{b}_{1}\right\rangle=0$ and hence $S=\left\langle a_{1}\right\rangle \oplus\left\langle b_{1}\right\rangle$. Let M be a nonzero ideal of $\left\langle a_{1}\right\rangle$ and let $m(\neq 0) \in M$ and $x_{1}(\neq 0) \in\left\langle b_{1}\right\rangle$. Then by the same argument of a and b, we have $\langle m\rangle+\left\langle x_{1}\right\rangle=S$ which implies $m_{1}+x_{1}^{\prime}=1_{S}$ for some $m_{1} \in\langle m\rangle$ and $x_{1}^{\prime} \in\left\langle x_{1}\right\rangle$. Now let $t \in\left\langle a_{1}\right\rangle$. Then $m_{1} t+x_{1}^{\prime} t=t$. Since $x_{1}^{\prime} t=0$, we have $t=m_{1} t \in M$. Thus $\left\langle a_{1}\right\rangle$ is simple. With the same argument, $\left\langle b_{1}\right\rangle$ is simple. Therefore $|\operatorname{Max}(\mathrm{S})|=2$, and so $|\operatorname{Max}(\mathrm{N})|=2$.

Corollary 2.13([3], Proposition 3.3). Assume that R is not local. Then $\operatorname{diam}\left(\Gamma_{2}(\mathrm{R}) \backslash \mathrm{J}(\mathrm{R})\right)=2$ if and only if one of the following holds:
(i) $J(R)$ is a prime ideal.
(ii) $|\operatorname{Max}(\mathrm{R})|=2$ and $R \nsubseteq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Acknowledgment. The authors would like to express their warmest thanks to the editor of the journal Professor Gary F. Birkenmeier for editing and communicating the paper.

References

[1] D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra, 159(1993), 500-514.
[2] I. Beck, Coloring of commutative rings, J. Algebra, 116(1988), 208-226.
[3] H. R. Maimani, M. Salimi, A. Sattari and S. Yassemi, Comaximal graph of commutative rings, J. Algebra, 319(4)(2008), 1801-1808.
[4] G. Mason, Reflexive ideals, Comm. Algebra, 9(1988), 1709-1724.
[5] G. Pilz, Near-Rings, North-Holland, Amsterdam, 1983.
[6] P. K. Sharma and S. M. Bhatwadekar, A note on graphical representation of rings, J. Algebra, 176(1995), 124-127.

[^0]: * Corresponding author.

 Received 16 May 2008; accepted 13 June 2008.
 2000 Mathematics Subject Classification: 16Y30, 13A99.
 Key words and phrases: ideal, diameter, complete and complete bipartite graph.

