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Abstract. Let N be a zero-symmetric near-ring with identity and let Γ(N) be a graph

with vertices as elements of N, where two different vertices a and b are adjacent if and only

if 〈a〉 + 〈b〉 = N, where 〈x〉 is the ideal of N generated by x. Let Γ1(N) be the subgraph

of Γ(N) generated by the set {n ∈ N : 〈n〉 = N} and Γ2(N) be the subgraph of Γ(N)

generated by the set N\v(Γ1(N)), where v(G) is the set of all vertices of a graph G. In

this paper, we completely characterize the diameter of the subgraph Γ2(N) of Γ(N). In

addition, it is shown that for any near-ring, Γ2(N)\M(N) is a complete bipartite graph if

and only if the number of maximal ideals of N is 2, where M(N) is the intersection of all

maximal ideals of N and Γ2(N)\M(N) is the graph obtained by removing the elements of

the set M(N) from the vertices set of the graph Γ2(N).

1. Preliminaries

Throughout this paper N is a zero symmetric near-ring with identity. M(N)
denotes the intersection of all maximal ideals of N, Max(N) denotes the set of all
maximal ideals of N, 〈x〉 denotes the ideal of N generated by x and v(G) denotes
the set of all vertices of a graph G.

For any vertices x, y in a graph G, if x and y are adjacent, we denote it as x ≈ y.
A graph is said to be connected if for each pair of distinct vertices v and w, there
is a finite sequence of distinct vertices v0 = v, v2, · · · , vn = w such that each pair
{vi, vi+1} is an edge. Such a sequence is said to be a path and the distance, d(v, w),
between connected vertices v and w is the length of the shortest path connecting
them. The diameter of a connected graph is the supremum of the distances between
vertices. The degree of a vertex v in G is the number of edges of G incident with
v. Let G1 be a subgraph of a graph G and v ∈ G1. Then degG1(v) is the number
of edges of G1 incident with v. An r-partite graph is one whose vertex set can be
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partitioned into r subsets so that no edge has both ends in any one subset. Let V
be the set of vertices of a graph G and V1 ⊆ V. Then G\V1 is the graph obtained by
removing the vertices of the set V1 from the vertices set of the graph G. A complete
r-partite graph is one in which each vertex is joined to every vertex that is not in
the same subset. The complete bipartite (i.e., 2-partite) graph with part sizes m
and n is denoted by Km,n. A graph in which each pair of distinct vertices is joined
by an edge is called a complete graph.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with disjoint vertices set Vi

and edges set Ei. The join of G1 and G2 is denoted by G = G1 ∨G2 with vertices
set V1∪V2 and the set of edges is E1∪E2∪{x ≈ y : x ∈ V1 and y ∈ V2}. Following
Mason [4], an ideal I of N is called completely reflexive if ab ∈ I implies ba ∈ I
for a, b ∈ N. In [2], Beck considered Γ(R) as a graph with vertices the elements
of a commutative ring R, where two different vertices a and b are adjacent if and
only if ab = 0. He studied finitely colorable rings with this graph structure and in
[1], Anderson and Naseer have made further studies of finitely colorable rings. In
[6], Sharma and Bhatwadekar defined another graph srtucture on a commutative
ring R with vertices the elements of R and where two distinct vertices a and b are
adjacent if and only if 〈a〉+ 〈b〉 = R.

In this paper, we extend the graph structure of rings as defined by Sharma and
Bhatwadekar and the results obtained by H. R. Maimani et al. [3] for commutative
rings to near-rings (not necessarily commutative). Let N be a near-ring and let
Γ(N) be a graph with vertices the elements of N and where two different vertices
a and b are adjacent if and only if 〈a〉+ 〈b〉 = N.

Let Γ1(N) be the subgraph of Γ(N) generated by the set {n ∈ N : 〈n〉 = N}
and Γ2(N) be the subgraphs of Γ(N) generated by the set N\v(Γ1(N)). Then
clearly Γ(N) = Γ1(N)∨Γ2(N). If N is a commutative ring, then the set of vertices
of Γ1(N) consists of unit elements of N. Other definitions and basic concepts in
near-ring theory can be found in G.Pilz [5].

2. Main results

Theorem 2.1. If {P1, P2, · · · , Pn} is a finite family of prime ideals of N with
I ⊆ ∪n

i=1Pi for any sub near-ring I of N, then I ⊆ Pi for some i.

Proof. We may assume that I is not contained in the union of any collection on
n − 1 of the P ′

i s. If so, we can simply replace n by n − 1. Thus for each i, we
can find an element ai ∈ I with ai /∈ P1 ∪ · · · ∪ Pi−1 ∪ Pi+1 · · · ∪ Pn. Take n = 2,
with I * P1 and I * P2. Then a1 ∈ P1, a2 /∈ P1, and so a1 + a2 /∈ P1. Similarly,
a1 /∈ P2, a2 ∈ P2, and so a1 + a2 /∈ P2. Thus a1 + a2 /∈ I ⊆ P1 ∪ P2, contradicting
a1, a2 ∈ I. Now assume that n > 2 and suppose that I * Pi for all i. Observe
that 〈a1〉〈a2〉 · · · 〈an−1〉 ⊆ P1 ∩ P2 · · · ∩ Pn−1, but an /∈ P1 ∪ P2 · · · ∪ Pn−1. Now
for all i = 1, 2, · · · , n − 1, we have ai /∈ Pn, and so 〈a1〉〈a2〉 · · · 〈an−1〉 * Pn. Then
there exists t ∈ 〈a1〉〈a2〉 · · · 〈an−1〉 such that x = t + an /∈ Pn. Thus x ∈ I and
x /∈ P1 ∪ P2 ∪ · · · ∪ Pn, a contradiction. �

Lemma 2.2. Let N be a near-ring. Then the following conditions hold:
(i) Γ1(N) is a complete graph.
(ii) a ∈ M(N) if and only if degΓ2(N)a = 0.
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Proof. (i) It is clear from definition.
(ii) Let a ∈ M(N) and suppose degΓ2(N)a 6= 0, then there exists b ∈ Γ2(N) such
that 〈a〉+〈b〉 = N. On the other hand there exists M ∈ Max(N) with b ∈ M, and so
M = N, a contradiction. Conversely, assume that degΓ2(N)a = 0 and suppose that
a /∈ M(N). Then there exists M ∈ Max(N) such that a /∈ M, and so 〈a〉+ M = N.
Therefore there exists b ∈ M such that 〈a〉+ 〈b〉 = N, a contradiction. �

Corollary 2.3([3], Lemma 2.1). Let R be a commutative ring with identity. Then
the following hold:

(i) Γ1(R) is a complete graph.
(ii) a ∈ J(R) if and only if degΓ2(R)a = 0, where J(R) denotes the Jacobson

radical of R.

Proof. If R is commutative ring with identity, then J(R) is M(R). �

Theorem 2.4. Let N be a near-ring. Then Γ2(N)\M(N) is connected graph and
diam (Γ2(N)\M(N)) ≤ 3.

Proof. Let a, b ∈ Γ2(N)\M(N).
Case (i): If 〈a〉〈b〉 * M(N), then 〈〈a〉〈b〉〉 * M(N), so there exists x ∈ Γ2(N)\M(N)
such that 〈〈a〉〈b〉〉 + 〈x〉 = N. Thus 〈a〉 + 〈x〉 = N and 〈b〉 + 〈x〉 = N. So we have
the path a ≈ x ≈ b, and so d(a, b) ≤ 2.
Case (ii): If 〈a〉〈b〉 ⊆ M(N), then Max(N) = Sa ∪ Sb, where Sa = {M ∈
Max(N) : a ∈ M} and Sb = {M ∈ Max(N) : b ∈ M}. Since a /∈ M(N),
there exists x ∈ Γ2(N) such that 〈a〉+ 〈x〉 = N. Then x /∈ M(N). Let M ∈ Max(N)
such that b /∈ M. Then x /∈ M, and so 〈b〉〈x〉 * M(N). Therefore by Case (i),
d(b, x) ≤ 2, and so d(a, b) ≤ 3. �

Corollary 2.5([3], Theorem 3.1). Let R be a commutative ring with identity. Then
Γ2(R)\J(R) is connected graph and diam (Γ2(R)\J(R)) ≤ 3.

Theorem 2.6. Let N be a near-ring. Then the following conditions are equivalent:
(i) Γ2(N)\M(N) is a complete bipartite graph.
(ii) The cardinal number of the set Max(N) is 2.

Proof. i) ⇒ ii) Suppose that Γ2(N)\M(N) is a complete bipartite graph with two
parts V1 and V2. Set M1 = V1 ∪M(N) and M2 = V2 ∪M(N). We claim that M1

and M2 are maximal ideals of N. Let x, y ∈ M1.
Consider the following three cases:
Case (i): If x, y ∈ M(N), then x− y ∈ M1.
Case (ii): If x ∈ M(N) and y ∈ V1, then x − y /∈ M(N). If 〈x − y〉 = N,
then 〈x〉 + 〈y〉 = N, a contradiction. If x − y ∈ M2, then x − y ∈ V2, and so
〈x−y〉+ 〈y〉 = N. Thus 〈x〉+ 〈y〉 = N, a contradiction. Therefore x−y ∈ V1 ⊆ M1.
Case (iii): Assume that x, y ∈ V1. If x− y ∈ M(N), then there is nothing to prove.
Otherwise x−y /∈ M(N). Then by same argument of Case (ii), we have x−y ∈ M1.
Let x ∈ M1 and n ∈ N. If either x ∈ M(N) or n + x − n ∈ M(N), then M1 is
a normal subgroup of N. So, we assume that x /∈ M(N) and n + x − n /∈ M(N).
Since 〈n + x − n〉 ⊆ 〈x〉, we have 〈n + x − n〉 6= N. If n + x − n ∈ M2, then
n + x− n ∈ V2, and so 〈n + x− n〉+ 〈x〉 = N which implies N = 〈x〉, a contradic-
tion. Therefore n + x− n ∈ V1 ⊆ M1. Let n ∈ N and x ∈ M1. If either x ∈ M(N)
or xn ∈ M(N), then M1 is right ideal of N. Otherwise x /∈ M(N) and xn /∈ M(N).
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Also 〈xn〉 6= N. Suppose that xn ∈ M2. Then xn ∈ V2, and so 〈xn〉+ 〈x〉 = N. Thus
〈x〉 = N, a contradiction. So xn ∈ M1. Let n, n1 ∈ N and let x ∈ M1. If either
x ∈ M(N) or n(n1 + x) − nn1 ∈ M(N), then M1 is a left ideal of N. Otherwise
x /∈ M(N) and n(n1 +x)−nn1 /∈ M(N). Also 〈n(n1 +x)−nn1〉 6= N. Suppose that
n(n1+x)−nn1 ∈ M2. Then n(n1+x)−nn1 ∈ V2, and so 〈x〉+〈n(n1+x)−nn1〉 = N
which implies N = 〈x〉, a contradiction. So n(n1 +x)−nn1 ∈ M1. So M1 is an ideal
of N. Let x ∈ N\M1. Then 〈x〉+〈y〉 = N for all y ∈ V1 which implies 〈x〉+M1 = N,
and so M1 is a maximal ideal of N.
With the same argument, M2 is a maximal ideal of N. Now, if M ∈ Max(N), then
M ⊆ M1 ∪M2, and so M = M1 or M = M2 by Theorem 2.1.
ii) ⇒ i) Let Max(N) = {M1,M2}. Thus the vertices set of Γ2(N)\M(N) is
equal to the set (M1\M2) ∪ (M2\M1). Let a ∈ M1\M2 and b ∈ M2\M1. Then
〈a〉+ 〈b〉 * M1 ∪M2 and so 〈a〉+ 〈b〉 = N. �

Corollary 2.7([3], Theorem 2.2). Let R be a commutative ring with identity. Then
the following are equivalent:

(i) Γ2(R)\J(R) is a complete bipartite graph.
(ii) The cardinal number of the set Max(R) is equal 2.

Theorem 2.8. Let N be a near-ring and let n > 1. Then the following hold:
(i) If |Max(N)| = n < ∞, then the graph Γ2(N)\M(N) is n-partite.
(ii) If the graph Γ2(N)\M(N) is n-partite, then |Max(N)| ≤ n. In this case if

the graph Γ2(N)\M(N) is not (n− 1)-partite, then |Max(N)| = n.

Proof. The proof is similar to that of Proposition 2.3 of [3]. 2

Theorem 2.9. Let N be a near-ring with |Max(N)| ≥ 2. Then the following hold:
(i) If Γ2(N)\M(N) is a complete n-partite graph, then n = 2.
(ii) If there exists a vertex of Γ2(N)\M(N) which is adjacent to every other

vertex, then N ∼= Z2 × F, where Z2 = {0, 1} is the ring under addition modulo 2
and multiplication modulo 2; F is a simple near-ring.
Proof. (i) Let M1,M2 be two maximal ideals of N. Since the elements of Mi\M(N)
are not adjacent, and at least one element of M1\M(N) is adjacent to M2\M(N),
so M1\M(N) and M2\M(N) are subsets of two distinct parts of Γ2(N). Suppose
M(N) ⊂ M1 ∩M2. Then there exists x ∈ M1 ∩M2 with x /∈ M(N), and so x be-
longs to M1\M(N) and M2\M(N), a contradiction to M1\M(N) and M2\M(N)
are subsets of two distinct parts of Γ2(N). Thus M(N) = M1 ∩ M2 and hence
|Max(N)| = 2. By Theorem 2.6, we have n = 2.
(ii) Let x ∈ Γ2(N)\M(N) such that x is adjacent to every other vertex. Clearly
〈x〉 ⊆ M for some maximal ideal M of N. Suppose y(6= 0) ∈ M(N). Then
x+y /∈ M(N) and 〈x+y〉 6= N which implies 〈x〉+〈x+y〉 = N, and so M = N, a con-
tradiction. So M(N) = 0. Now, let y ∈ M with y /∈ {0, x}. Then N = 〈x〉+〈y〉 ⊆ M,
a contradiction. Therefore M = {0, x} = 〈x〉 is a maximal ideal of N. Thus for each
s(6= 0) ∈ Γ2(N), having 〈x〉+ 〈s〉 = N implies N/〈x〉 ∼= 〈s〉. Thus 〈s〉 = F is simple
and hence N ∼= Z2 × F. �

Corollary 2.10([3], Proposition 2.4). Let R be a commutative ring with |Max(R)| ≥
2. Then the following hold:

(i) If Γ2(R)\J(R) is a complete n-partite graph, then n = 2.
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(ii) If there exists a vertex of Γ2(R)\J(R) which is adjacent to every other ver-
tex, then R ∼= Z2 × F, where F is a field.

Lemma 2.11. Let N be a near-ring. Then diam(Γ2(N)\M(N)) = 1 if and only if
N ∼= Z2 × Z2.

Proof. The proof is similar to that of Lemma 3.2 of [3]. �

Theorem 2.12. Let N be a near-ring with atleast two maximal ideals and let M(N)
be a completely reflexive ideal of N. Then diam(Γ2(N)\M(N)) = 2 if and only if one
of the following holds:

(i) M(N) is a prime ideal.
(ii) |Max(N)| = 2 and N � Z2 × Z2.

Proof. Let M(N) be prime and let a, b ∈ Γ2(N)\M(N). Then 〈a〉〈b〉 * M(N),
and so by the same argument as in Theorem 2.4, there exists x ∈ Γ2(N)\M(N)
such that a ≈ x ≈ y is a path. If diam(Γ2(N)\M(N)) = 1, then by Lemma 2.11,
N ∼= Z2 × Z2. But M(Z2 × Z2) is not a prime ideal, a contradiction.
Next, let |Max(N)| = 2 and N � Z2 × Z2, then by Theorem 2.6, Γ2(N)\M(N) is a
complete bipartite graph where at least one of the parts has at least two elements.
So diam(Γ2(N)\M(N)) = 2.

Conversely, let diam(Γ2(N)\M(N)) = 2 and M(N) is not prime. Let a, b /∈
M(N), but 〈a〉〈b〉 ⊆ M(N). We show that a and b are adjacent. Otherwise there
exists t ∈ Γ2(N) such that 〈a〉+〈t〉 = 〈b〉+〈t〉 = N. Then there are x1 ∈ 〈a〉;x

′

1 ∈ 〈b〉
and y1, y

′

1 ∈ 〈t〉 such that x1 + y1 = x
′

1 + y
′

1 = 1 which implies x1x
′

1 + y1x
′

1 + y
′

1 = 1.
Since x1x

′

1 ∈ 〈a〉〈b〉 and y1x
′

1 + y
′

1 ∈ 〈t〉, we have 〈〈a〉〈b〉〉+ 〈t〉 = N, which implies
〈a〉〈b〉 * M(N), a contradiction. Therefore 〈a〉 + 〈b〉 = N, and so x + y = 1 for
some x ∈ 〈a〉 and y ∈ 〈b〉.
Set S = N/M(N) and a1 = x + M(N) and b1 = y + M(N). Then a1b1 = 0
and a1 + b1 = 1S . Since M(N) is completely reflexive, we have 〈a1〉〈b1〉 = 0. If
z ∈ 〈a1〉 ∩ 〈b1〉, then 〈z〉2 ⊆ 〈a1〉〈b1〉 = 0. Since M(N) in semiprime ideal of N, we
have z = 0. Thus 〈a1〉 ∩ 〈b1〉 = 0 and hence S = 〈a1〉 ⊕ 〈b1〉. Let M be a nonzero
ideal of 〈a1〉 and let m(6= 0) ∈ M and x1(6= 0) ∈ 〈b1〉. Then by the same argu-
ment of a and b, we have 〈m〉 + 〈x1〉 = S which implies m1 + x

′

1 = 1S for some
m1 ∈ 〈m〉 and x

′

1 ∈ 〈x1〉. Now let t ∈ 〈a1〉. Then m1t + x
′

1t = t. Since x
′

1t = 0, we
have t = m1t ∈ M. Thus 〈a1〉 is simple. With the same argument, 〈b1〉 is simple.
Therefore |Max(S)| = 2, and so |Max(N)| = 2. �

Corollary 2.13([3], Proposition 3.3). Assume that R is not local. Then
diam(Γ2(R)\J(R)) = 2 if and only if one of the following holds:

(i) J(R) is a prime ideal.
(ii) |Max(R)| = 2 and R � Z2 × Z2. 2
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