KYUNGPOOK Math. J. 49(2009), 283-288

On Comaximal Graphs of Near-rings

PATCHIRAJULU DHEENA Department of Mathematics, Annamalai University, Annamalainagar - 608002, Tamilnadu, India e-mail: dheenap@yahoo.com

BALASUBRAMANIAN ELAVARASAN*

Department of Mathematics, K. S. R. College of Engineering, KSR Kalvinagar, Tiruchengode - 637209, Namakkal District, Tamilnadu, India e-mail: belavarasan@gmail.com

ABSTRACT. Let N be a zero-symmetric near-ring with identity and let $\Gamma(N)$ be a graph with vertices as elements of N, where two different vertices a and b are adjacent if and only if $\langle a \rangle + \langle b \rangle = N$, where $\langle x \rangle$ is the ideal of N generated by x. Let $\Gamma_1(N)$ be the subgraph of $\Gamma(N)$ generated by the set $\{n \in N : \langle n \rangle = N\}$ and $\Gamma_2(N)$ be the subgraph of $\Gamma(N)$ generated by the set $N \setminus v(\Gamma_1(N))$, where v(G) is the set of all vertices of a graph G. In this paper, we completely characterize the diameter of the subgraph $\Gamma_2(N)$ of $\Gamma(N)$. In addition, it is shown that for any near-ring, $\Gamma_2(N) \setminus M(N)$ is a complete bipartite graph if and only if the number of maximal ideals of N is 2, where M(N) is the intersection of all maximal ideals of N and $\Gamma_2(N) \setminus M(N)$ is the graph obtained by removing the elements of the set M(N) from the vertices set of the graph $\Gamma_2(N)$.

1. Preliminaries

Throughout this paper N is a zero symmetric near-ring with identity. M(N) denotes the intersection of all maximal ideals of N, Max(N) denotes the set of all maximal ideals of N, $\langle x \rangle$ denotes the ideal of N generated by x and v(G) denotes the set of all vertices of a graph G.

For any vertices x, y in a graph G, if x and y are adjacent, we denote it as $x \approx y$. A graph is said to be connected if for each pair of distinct vertices v and w, there is a finite sequence of distinct vertices $v_0 = v, v_2, \dots, v_n = w$ such that each pair $\{v_i, v_{i+1}\}$ is an edge. Such a sequence is said to be a path and the distance, d(v, w), between connected vertices v and w is the length of the shortest path connecting them. The diameter of a connected graph is the supremum of the distances between vertices. The degree of a vertex v in G is the number of edges of G incident with v. Let G_1 be a subgraph of a graph G and $v \in G_1$. Then $deg_{G_1}(v)$ is the number of edges of G_1 incident with v. An r-partite graph is one whose vertex set can be

^{*} Corresponding author.

Received 16 May 2008; accepted 13 June 2008.

²⁰⁰⁰ Mathematics Subject Classification: 16Y30, 13A99.

Key words and phrases: ideal, diameter, complete and complete bipartite graph.

²⁸³

partitioned into r subsets so that no edge has both ends in any one subset. Let V be the set of vertices of a graph G and $V_1 \subseteq V$. Then $G \setminus V_1$ is the graph obtained by removing the vertices of the set V_1 from the vertices set of the graph G. A complete r-partite graph is one in which each vertex is joined to every vertex that is not in the same subset. The complete bipartite (i.e., 2-partite) graph with part sizes m and n is denoted by $K_{m,n}$. A graph in which each pair of distinct vertices is joined by an edge is called a complete graph.

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs with disjoint vertices set V_i and edges set E_i . The join of G_1 and G_2 is denoted by $G = G_1 \vee G_2$ with vertices set $V_1 \cup V_2$ and the set of edges is $E_1 \cup E_2 \cup \{x \approx y : x \in V_1 \text{ and } y \in V_2\}$. Following Mason [4], an ideal I of N is called completely reflexive if $ab \in I$ implies $ba \in I$ for $a, b \in N$. In [2], Beck considered $\Gamma(R)$ as a graph with vertices the elements of a commutative ring R, where two different vertices a and b are adjacent if and only if ab = 0. He studied finitely colorable rings with this graph structure and in [1], Anderson and Naseer have made further studies of finitely colorable rings. In [6], Sharma and Bhatwadekar defined another graph structure on a commutative ring R with vertices the elements of R and where two distinct vertices a and b are adjacent if and only if $\langle a \rangle + \langle b \rangle = R$.

In this paper, we extend the graph structure of rings as defined by Sharma and Bhatwadekar and the results obtained by H. R. Maimani et al. [3] for commutative rings to near-rings (not necessarily commutative). Let N be a near-ring and let $\Gamma(N)$ be a graph with vertices the elements of N and where two different vertices a and b are adjacent if and only if $\langle a \rangle + \langle b \rangle = N$.

Let $\Gamma_1(N)$ be the subgraph of $\Gamma(N)$ generated by the set $\{n \in N : \langle n \rangle = N\}$ and $\Gamma_2(N)$ be the subgraphs of $\Gamma(N)$ generated by the set $N \setminus v(\Gamma_1(N))$. Then clearly $\Gamma(N) = \Gamma_1(N) \vee \Gamma_2(N)$. If N is a commutative ring, then the set of vertices of $\Gamma_1(N)$ consists of unit elements of N. Other definitions and basic concepts in near-ring theory can be found in G.Pilz [5].

2. Main results

Theorem 2.1. If $\{P_1, P_2, \dots, P_n\}$ is a finite family of prime ideals of N with $I \subseteq \bigcup_{i=1}^n P_i$ for any sub near-ring I of N, then $I \subseteq P_i$ for some i.

Proof. We may assume that I is not contained in the union of any collection on n-1 of the P'_i 's. If so, we can simply replace n by n-1. Thus for each i, we can find an element $a_i \in I$ with $a_i \notin P_1 \cup \cdots \cup P_{i-1} \cup P_{i+1} \cdots \cup P_n$. Take n = 2, with $I \nsubseteq P_1$ and $I \nsubseteq P_2$. Then $a_1 \in P_1$, $a_2 \notin P_1$, and so $a_1 + a_2 \notin P_1$. Similarly, $a_1 \notin P_2$, $a_2 \in P_2$, and so $a_1 + a_2 \notin P_2$. Thus $a_1 + a_2 \notin I \subseteq P_1 \cup P_2$, contradicting $a_1, a_2 \in I$. Now assume that n > 2 and suppose that $I \nsubseteq P_1 \cup P_2 \cdots \cup P_{n-1}$. Now for all $i = 1, 2, \cdots, n-1$, we have $a_i \notin P_n$, and so $\langle a_1 \rangle \langle a_2 \rangle \cdots \langle a_{n-1} \rangle \nsubseteq P_n$. Then there exists $t \in \langle a_1 \rangle \langle a_2 \rangle \cdots \langle a_{n-1} \rangle$ such that $x = t + a_n \notin P_n$. Thus $x \in I$ and $x \notin P_1 \cup P_2 \cup \cdots \cup P_n$, a contradiction.

Lemma 2.2. Let N be a near-ring. Then the following conditions hold:

(i) $\Gamma_1(N)$ is a complete graph.

(ii) $a \in M(N)$ if and only if $deg_{\Gamma_2(N)}a = 0$.

Proof. (i) It is clear from definition.

(ii) Let $a \in M(N)$ and suppose $deg_{\Gamma_2(N)}a \neq 0$, then there exists $b \in \Gamma_2(N)$ such that $\langle a \rangle + \langle b \rangle = N$. On the other hand there exists $M \in Max(N)$ with $b \in M$, and so M = N, a contradiction. Conversely, assume that $deg_{\Gamma_2(N)}a = 0$ and suppose that $a \notin M(N)$. Then there exists $M \in Max(N)$ such that $a \notin M$, and so $\langle a \rangle + M = N$. Therefore there exists $b \in M$ such that $\langle a \rangle + \langle b \rangle = N$, a contradiction. \Box

Corollary 2.3([3], Lemma 2.1). Let R be a commutative ring with identity. Then the following hold:

(i) $\Gamma_1(R)$ is a complete graph.

(ii) $a \in J(R)$ if and only if $deg_{\Gamma_2(R)}a = 0$, where J(R) denotes the Jacobson radical of R.

Proof. If R is commutative ring with identity, then J(R) is M(R).

Theorem 2.4. Let N be a near-ring. Then $\Gamma_2(N) \setminus M(N)$ is connected graph and diam $(\Gamma_2(N) \setminus M(N)) \leq 3$.

Proof. Let $a, b \in \Gamma_2(N) \setminus M(N)$.

Case (i): If $\langle a \rangle \langle b \rangle \not\subseteq M(N)$, then $\langle \langle a \rangle \langle b \rangle \rangle \not\subseteq M(N)$, so there exists $x \in \Gamma_2(N) \setminus M(N)$ such that $\langle \langle a \rangle \langle b \rangle \rangle + \langle x \rangle = N$. Thus $\langle a \rangle + \langle x \rangle = N$ and $\langle b \rangle + \langle x \rangle = N$. So we have the path $a \approx x \approx b$, and so $d(a, b) \leq 2$.

Case (ii): If $\langle a \rangle \langle b \rangle \subseteq M(N)$, then $\operatorname{Max}(N) = S_a \cup S_b$, where $S_a = \{M \in \operatorname{Max}(N) : a \in M\}$ and $S_b = \{M \in \operatorname{Max}(N) : b \in M\}$. Since $a \notin M(N)$, there exists $x \in \Gamma_2(N)$ such that $\langle a \rangle + \langle x \rangle = N$. Then $x \notin M(N)$. Let $M \in \operatorname{Max}(N)$ such that $b \notin M$. Then $x \notin M$, and so $\langle b \rangle \langle x \rangle \notin M(N)$. Therefore by Case (i), $d(b,x) \leq 2$, and so $d(a,b) \leq 3$.

Corollary 2.5([3], Theorem 3.1). Let R be a commutative ring with identity. Then $\Gamma_2(R) \setminus J(R)$ is connected graph and diam $(\Gamma_2(R) \setminus J(R)) \leq 3$.

Theorem 2.6. Let N be a near-ring. Then the following conditions are equivalent: (i) $\Gamma_2(N) \setminus M(N)$ is a complete bipartite graph.

(ii) The cardinal number of the set Max(N) is 2.

Proof. i) \Rightarrow ii) Suppose that $\Gamma_2(N) \setminus M(N)$ is a complete bipartite graph with two parts V_1 and V_2 . Set $M_1 = V_1 \cup M(N)$ and $M_2 = V_2 \cup M(N)$. We claim that M_1 and M_2 are maximal ideals of N. Let $x, y \in M_1$.

Consider the following three cases:

Case (i): If $x, y \in M(N)$, then $x - y \in M_1$. Case (ii): If $x \in M(N)$ and $y \in V_1$, then $x - y \notin M(N)$. If $\langle x - y \rangle = N$, then $\langle x \rangle + \langle y \rangle = N$, a contradiction. If $x - y \in M_2$, then $x - y \in V_2$, and so $\langle x - y \rangle + \langle y \rangle = N$. Thus $\langle x \rangle + \langle y \rangle = N$, a contradiction. Therefore $x - y \in V_1 \subseteq M_1$. Case (iii): Assume that $x, y \in V_1$. If $x - y \in M(N)$, then there is nothing to prove. Otherwise $x - y \notin M(N)$. Then by same argument of Case (ii), we have $x - y \in M_1$. Let $x \in M_1$ and $n \in N$. If either $x \in M(N)$ or $n + x - n \in M(N)$, then M_1 is

a normal subgroup of N. So, we assume that $x \notin M(N)$ of $n + x - n \notin M(N)$, then M_1 is so a normal subgroup of N. So, we assume that $x \notin M(N)$ and $n + x - n \notin M(N)$. Since $\langle n + x - n \rangle \subseteq \langle x \rangle$, we have $\langle n + x - n \rangle \neq N$. If $n + x - n \in M_2$, then $n + x - n \in V_2$, and so $\langle n + x - n \rangle + \langle x \rangle = N$ which implies $N = \langle x \rangle$, a contradiction. Therefore $n + x - n \in V_1 \subseteq M_1$. Let $n \in N$ and $x \in M_1$. If either $x \in M(N)$ or $xn \in M(N)$, then M_1 is right ideal of N. Otherwise $x \notin M(N)$ and $xn \notin M(N)$.

 \square

Also $\langle xn \rangle \neq N$. Suppose that $xn \in M_2$. Then $xn \in V_2$, and so $\langle xn \rangle + \langle x \rangle = N$. Thus $\langle x \rangle = N$, a contradiction. So $xn \in M_1$. Let $n, n_1 \in N$ and let $x \in M_1$. If either $x \in M(N)$ or $n(n_1 + x) - nn_1 \in M(N)$, then M_1 is a left ideal of N. Otherwise $x \notin M(N)$ and $n(n_1 + x) - nn_1 \notin M(N)$. Also $\langle n(n_1 + x) - nn_1 \rangle \neq N$. Suppose that $n(n_1 + x) - nn_1 \in M_2$. Then $n(n_1 + x) - nn_1 \in V_2$, and so $\langle x \rangle + \langle n(n_1 + x) - nn_1 \rangle = N$ which implies $N = \langle x \rangle$, a contradiction. So $n(n_1 + x) - nn_1 \in M_1$. So M_1 is an ideal of N. Let $x \in N \setminus M_1$. Then $\langle x \rangle + \langle y \rangle = N$ for all $y \in V_1$ which implies $\langle x \rangle + M_1 = N$, and so M_1 is a maximal ideal of N.

With the same argument, M_2 is a maximal ideal of N. Now, if $M \in Max(N)$, then $M \subseteq M_1 \cup M_2$, and so $M = M_1$ or $M = M_2$ by Theorem 2.1. $ii) \Rightarrow i$ Let $Max(N) = \{M_1, M_2\}$. Thus the vertices set of $\Gamma_2(N) \setminus M(N)$ is

 $ii) \Rightarrow i)$ Let Max(N) = {M₁, M₂}. Thus the vertices set of $\Gamma_2(N) \setminus M(N)$ is equal to the set $(M_1 \setminus M_2) \cup (M_2 \setminus M_1)$. Let $a \in M_1 \setminus M_2$ and $b \in M_2 \setminus M_1$. Then $\langle a \rangle + \langle b \rangle \notin M_1 \cup M_2$ and so $\langle a \rangle + \langle b \rangle = N$.

Corollary 2.7([3], Theorem 2.2). Let R be a commutative ring with identity. Then the following are equivalent:

(i) $\Gamma_2(R) \setminus J(R)$ is a complete bipartite graph.

(ii) The cardinal number of the set Max(R) is equal 2.

Theorem 2.8. Let N be a near-ring and let n > 1. Then the following hold:

(i) If $|Max(N)| = n < \infty$, then the graph $\Gamma_2(N) \setminus M(N)$ is n-partite.

(ii) If the graph $\Gamma_2(N) \setminus M(N)$ is n-partite, then $|Max(N)| \leq n$. In this case if the graph $\Gamma_2(N) \setminus M(N)$ is not (n-1)-partite, then |Max(N)| = n.

Proof. The proof is similar to that of Proposition 2.3 of [3].

Theorem 2.9. Let N be a near-ring with $|Max(N)| \ge 2$. Then the following hold: (i) If $\Gamma_2(N) \setminus M(N)$ is a complete n-partite graph, then n = 2.

(ii) If there exists a vertex of $\Gamma_2(N) \setminus M(N)$ which is adjacent to every other vertex, then $N \cong \mathbb{Z}_2 \times F$, where $\mathbb{Z}_2 = \{0, 1\}$ is the ring under addition modulo 2 and multiplication modulo 2; F is a simple near-ring.

Proof. (i) Let M_1, M_2 be two maximal ideals of N. Since the elements of $M_i \setminus M(N)$ are not adjacent, and at least one element of $M_1 \setminus M(N)$ is adjacent to $M_2 \setminus M(N)$, so $M_1 \setminus M(N)$ and $M_2 \setminus M(N)$ are subsets of two distinct parts of $\Gamma_2(N)$. Suppose $M(N) \subset M_1 \cap M_2$. Then there exists $x \in M_1 \cap M_2$ with $x \notin M(N)$, and so x belongs to $M_1 \setminus M(N)$ and $M_2 \setminus M(N)$, a contradiction to $M_1 \setminus M(N)$ and $M_2 \setminus M(N)$ are subsets of $\Gamma_2(N)$. Thus $M(N) = M_1 \cap M_2$ and hence |Max(N)| = 2. By Theorem 2.6, we have n = 2.

(ii) Let $x \in \Gamma_2(N) \setminus M(N)$ such that x is adjacent to every other vertex. Clearly $\langle x \rangle \subseteq M$ for some maximal ideal M of N. Suppose $y(\neq 0) \in M(N)$. Then $x+y \notin M(N)$ and $\langle x+y \rangle \neq N$ which implies $\langle x \rangle + \langle x+y \rangle = N$, and so M = N, a contradiction. So M(N) = 0. Now, let $y \in M$ with $y \notin \{0, x\}$. Then $N = \langle x \rangle + \langle y \rangle \subseteq M$, a contradiction. Therefore $M = \{0, x\} = \langle x \rangle$ is a maximal ideal of N. Thus for each $s(\neq 0) \in \Gamma_2(N)$, having $\langle x \rangle + \langle s \rangle = N$ implies $N/\langle x \rangle \cong \langle s \rangle$. Thus $\langle s \rangle = F$ is simple and hence $N \cong \mathbb{Z}_2 \times F$.

Corollary 2.10([3], Proposition 2.4). Let R be a commutative ring with $|Max(R)| \ge 2$. Then the following hold:

(i) If $\Gamma_2(R) \setminus J(R)$ is a complete n-partite graph, then n = 2.

(ii) If there exists a vertex of $\Gamma_2(R) \setminus J(R)$ which is adjacent to every other vertex, then $R \cong \mathbb{Z}_2 \times F$, where F is a field.

Lemma 2.11. Let N be a near-ring. Then diam $(\Gamma_2(N)\backslash M(N)) = 1$ if and only if $N \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

Proof. The proof is similar to that of Lemma 3.2 of [3].

Theorem 2.12. Let N be a near-ring with atleast two maximal ideals and let M(N) be a completely reflexive ideal of N. Then diam $(\Gamma_2(N) \setminus M(N)) = 2$ if and only if one of the following holds:

(i) M(N) is a prime ideal.

(ii) |Max(N)| = 2 and $N \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

Proof. Let M(N) be prime and let $a, b \in \Gamma_2(N) \setminus M(N)$. Then $\langle a \rangle \langle b \rangle \nsubseteq M(N)$, and so by the same argument as in Theorem 2.4, there exists $x \in \Gamma_2(N) \setminus M(N)$ such that $a \approx x \approx y$ is a path. If diam $(\Gamma_2(N) \setminus M(N)) = 1$, then by Lemma 2.11, $N \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. But $M(\mathbb{Z}_2 \times \mathbb{Z}_2)$ is not a prime ideal, a contradiction.

Next, let |Max(N)| = 2 and $N \not\cong \mathbb{Z}_2 \times \mathbb{Z}_2$, then by Theorem 2.6, $\Gamma_2(N) \setminus M(N)$ is a complete bipartite graph where at least one of the parts has at least two elements. So diam $(\Gamma_2(N) \setminus M(N)) = 2$.

Conversely, let diam($\Gamma_2(\mathbf{N})\setminus \mathbf{M}(\mathbf{N})$) = 2 and M(N) is not prime. Let $a, b \notin M(N)$, but $\langle a \rangle \langle b \rangle \subseteq M(N)$. We show that a and b are adjacent. Otherwise there exists $t \in \Gamma_2(N)$ such that $\langle a \rangle + \langle t \rangle = \langle b \rangle + \langle t \rangle = N$. Then there are $x_1 \in \langle a \rangle; x'_1 \in \langle b \rangle$ and $y_1, y'_1 \in \langle t \rangle$ such that $x_1 + y_1 = x'_1 + y'_1 = 1$ which implies $x_1x'_1 + y_1x'_1 + y'_1 = 1$. Since $x_1x'_1 \in \langle a \rangle \langle b \rangle$ and $y_1x'_1 + y'_1 \in \langle t \rangle$, we have $\langle \langle a \rangle \langle b \rangle + \langle t \rangle = N$, which implies $\langle a \rangle \langle b \rangle \notin M(N)$, a contradiction. Therefore $\langle a \rangle + \langle b \rangle = N$, and so x + y = 1 for some $x \in \langle a \rangle$ and $y \in \langle b \rangle$.

Set S = N/M(N) and $a_1 = x + M(N)$ and $b_1 = y + M(N)$. Then $a_1b_1 = 0$ and $a_1 + b_1 = 1_S$. Since M(N) is completely reflexive, we have $\langle a_1 \rangle \langle b_1 \rangle = 0$. If $z \in \langle a_1 \rangle \cap \langle b_1 \rangle$, then $\langle z \rangle^2 \subseteq \langle a_1 \rangle \langle b_1 \rangle = 0$. Since M(N) in semiprime ideal of N, we have z = 0. Thus $\langle a_1 \rangle \cap \langle b_1 \rangle = 0$ and hence $S = \langle a_1 \rangle \oplus \langle b_1 \rangle$. Let M be a nonzero ideal of $\langle a_1 \rangle$ and let $m(\neq 0) \in M$ and $x_1(\neq 0) \in \langle b_1 \rangle$. Then by the same argument of a and b, we have $\langle m \rangle + \langle x_1 \rangle = S$ which implies $m_1 + x'_1 = 1_S$ for some $m_1 \in \langle m \rangle$ and $x'_1 \in \langle x_1 \rangle$. Now let $t \in \langle a_1 \rangle$. Then $m_1 t + x'_1 t = t$. Since $x'_1 t = 0$, we have $t = m_1 t \in M$. Thus $\langle a_1 \rangle$ is simple. With the same argument, $\langle b_1 \rangle$ is simple. Therefore |Max(S)| = 2, and so |Max(N)| = 2.

Corollary 2.13([3], Proposition 3.3). Assume that R is not local. Then $\operatorname{diam}(\Gamma_2(\mathbb{R})\setminus J(\mathbb{R})) = 2$ if and only if one of the following holds:

(i) J(R) is a prime ideal.

(ii) |Max(R)| = 2 and $R \not\cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

Acknowledgment. The authors would like to express their warmest thanks to the editor of the journal Professor Gary F. Birkenmeier for editing and communicating the paper.

P. Dheena and B. Elavarasan

References

- D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra, 159(1993), 500-514.
- [2] I. Beck, Coloring of commutative rings, J. Algebra, 116(1988), 208-226.
- [3] H. R. Maimani, M. Salimi, A. Sattari and S. Yassemi, Comaximal graph of commutative rings, J. Algebra, 319(4)(2008), 1801-1808.
- [4] G. Mason, *Reflexive ideals*, Comm. Algebra, 9(1988), 1709-1724.
- [5] G. Pilz, Near-Rings, North-Holland, Amsterdam, 1983.
- [6] P. K. Sharma and S. M. Bhatwadekar, A note on graphical representation of rings, J. Algebra, 176(1995), 124-127.

288