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Abstract. We say that (R, f, g) is an additive (m, n)-semihyperring if R is a non-empty

set, f is an m-ary associative hyperoperation, g is an n-ary associative operation and g is

distributive with respect to f . In this paper, we describe a number of characterizations

of additive (m, n)-semihyperrings which generalize well-known results. Also, we consider

distinguished elements, hyperideals, Rees factors and regular relations. Later, we give a

natural method to derive the quotient (m, n)-semihyperring.

1. Introduction

Canonical hypergroups [24] is a special class of Marty’s hypergroup [22]. The
more general structure that satisfies the ring-like axioms is the hyperring in the
general sense: (R, +, ·) is a hyperring if + and · are two hyperoperations such that
(R, +) is a hypergroup and · is an associative hyperoperation, which is distributive
with respect to +. There are different notions of hyperrings. If only the addition +
is a hyperoperation and the multiplication · is a usual operation, then we say that
R is an additive hyperring. A special case of this type is the hyperring introduced
by Krasner [16]. According to [7], an additive semihyperring is a system consisting
of a set S together with a binary hyperoperation on S called hypersum and a binary
operation multiplication (denoted in the usual manner) such that (1) S together with
hypersum +, is a (commutative) semihypergroup, (2) S together with multiplication
· is a semigroup, (3) a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c, for all
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a, b, c ∈ S.
The idea of investigations of n-ary algebras, i.e., sets with one n-ary operation,

seems to be going back to Kasner’s lecture [15] at the 53rd annual meeting of the
American Association of the Advancement of Science in 1904. But the first pa-
per concerning the theory of n-ary groups was written (under inspiration of Emmy
Noether) by Dörnte in 1928 (see [12]). Since then many papers concerning var-
ious n-ary algebras have appeared in the literature, for example see [5, 25, 26].
The concept of n-ary hypergroup is defined by Davvaz and Vougiouklis in [9],
which is a generalization of the concept of hypergroup in the sense of Marty and
a generalization of n-ary group, too. Then this concept was studied by Anvariyeh,
Davvaz, Dudek, Leoreanu-Fotea Mirvakili, Vougiouklis, and others, for example see
[1, 10, 11, 14, 18, 19, 20, 21]. The concept of n-ary algebraic hyperstructures con-
stitute a generalization of well-known algebraic hyperstructures (semihypergroup,
hypergroup, hyperring and so on).

Let S be a set. A map f from S × . . . × S to ℘∗(S), the non-empty subsets
of S, where S appears n times, is called an n-ary hyperoperation. If f is an n-ary
hyperoperation defined on S, then (S, f) is called an n-ary hypergroupoid. We shall
use the following abbreviated notation: the sequence xi, xi+1, . . . , xj will be denoted
by xj

i . For j < i, xj
i is the empty symbol. In this convention

f(x1, . . . , xi, yi+1, . . . , yj , zj+1, . . . , zn)

will be written as f(xi
1, y

j
i+1, z

n
j+1). In the case when yi+1 = . . . = yj = y the last

expression will be written in the form f(xi
1,

(j−i)
y , zn

j+1). Also, for non-empty subsets
A1, . . . , An of S we define f(An

1 ) = f(A1, . . . , An) = ∪{f(xn
1 ) |xi ∈ Ai, i = 1, . . . n}.

An n-ary hyperoperation f is called associative if

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j )

holds for every i, j ∈ {1, . . . , n} and all x1, x2, . . . , x2n−1 ∈ S. An n-ary hy-
pergroupoid with the associative hyperoperation is called an n-ary semihyper-
group. An n-ary semihypergroup (S, f) is called n-ary hypergroup if for ev-
ery xn

1 ∈ S and i = {1, . . . , n} we have f(xi−1
1 , S, xn

i+1) = S. An n-ary hy-
pergroupoid (S, f) is commutative if for all σ ∈ Sn and for every an

1 ∈ S

we have f(a1, . . . , an) = f(aσ(1), . . . , aσ(n)). If an
1 ∈ S we denote a

σ(n)
σ(1) as the

aσ(1), . . . , aσ(n). An element e of S is called a neutral element (scalar neutral el-

ement) if x ∈ f(
(i−1)

e , x,
(n−i)

e )(x = f(
(i−1)

e , x,
(n−i)

e )), for all x ∈ S and all 1 ≤ i ≤ n.
An n-ary semihypergroup (S, f) is i-cancellative, if for every a2, . . . , an ∈ S,
f(ai

2, x, an
i+1) = f(ai

2, y, an
i+1) implies x = y, for all x, y ∈ S. If this implication

is valid for all i = 1, 2, . . . , n, then we say that (S, f) is cancellative. If for some
a2, . . . , an ∈ S, f(ai

2, x, an
i+1) = f(ai

2, y, an
i+1) implies x = y, for all x, y ∈ S then

the elements a2, . . . , an are called cancellable.
In some papers several authors generalize the study of ordinary rings to the
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case where the ring operations are respectively m-ary and n-ary. (m,n)-rings were
studied by Crombez [2], Crombez and Timm [3], Dudek [13] and Lee [17].

Now, in this paper we study a generalization of additive semihyperrings and a
generalization of (m,n)-semirings.

Definition 1. An additive (m,n)-semihyperring is an algebraic hyperstructure
(R, f, g), which satisfies the following axioms:

(1) (R, f) is an m-ary semihypergroup,

(2) (R, g) is an n-ary semigroup,

(3) the n-ary operation g is distributive with respect to the m-ary hyperoperation
f, i.e., for every ai−1

1 , an
i+1, x

m
1 ∈ R, 1 ≤ i ≤ n,

g(ai−1
1 , f(xm

1 ), an
i+1) = f(g(ai−1

1 , x1, a
n
i+1), . . . , g(ai−1

1 , xm, an
i+1)).

Throughout this paper, every (m,n)-semihyperring is an additive (m,n)-
semihyperring. If f is an m-ary operation then (R, f, g) is called an (m,n)-semiring.
An additive (m,n)-semihyperring is called an additive (m,n)-hyperring if (R, f) is
an m-ary hypergroup. Let (R, f, g) be an (m,n)-semihyperring such that (R, f) has
a neutral (scalar neutral) element 0, then 0 is called a zero (scalar zero) element
if g(xi−1

1 , 0, xn
i+1) = 0, for every xn

1 ∈ R. A special subclass of additive (m,n)-
hyperrings is the Krasner (m,n)-hyperring. We recall the following definition from
[23]. A Krasner (m, n)-hyperring is an additive (m, n)-hyperring such that (R, f) is a
canonical m-ary hypergroup and relating to the n-ary multiplication, (R, g) is an n-
ary semigroup having zero element 0. In an additive (m,n)-semihyperring (R, f, g),
fixing elements am−1

2 and bn−1
2 we obtain a hyperoperation ⊕ and an operation ¯ as

follows: x⊕y = f(x, am−1
2 , y) and x¯y = f(x, bn−1

2 , y). Choosing different elements
am−1
2 and bn−1

2 , we obtain different binary relations. Obviously, (R,⊕,¯) is an ad-
ditive semihyperring. Such obtained additive semihyperrings are called retracts of
(R, f, g). Let (R,⊕,¯) be an additive semihyperring. Let f be an m-ary hyperop-
eration and g be an n-ary operation on R as follows: f(xm

1 ) = x1 ⊕ . . . ⊕ xm and
g(yn

1 ) = y1¯ . . .¯yn, for all xm
1 , yn

1 ∈ R. Then, (R, f, g) is an (m,n)-semihyperring.

Example 1. Let N be the set of all positive integers. We define an m-ary hyper-
operation and an n-ary multiplication on N in the following way:

f(x1, . . . , xm) =
m⋃

i=1

{xi} and g(x1, . . . , xn) =
n∏

i=1

xi,

Then, (N, f, g) is an (m,n)-semihyperring. It has not zero element.

Example 2. Let (R, +, ·) be a semiring. We define an m-ary hyperoperation and
an n-ary multiplication on R in the following way:

(1) f(x1, . . . , xm) =< x1, . . . , xm >, the ideal generated by x1, . . . , xn,

(2) g(xn
1 ) = x1 · . . . · xn.
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Then, (R, f, g) is an (m, n)-semihyperring. If R has a zero element 0, then 0 is a
zero element of (R, f, g).

Example 3. Let I be the real interval [0, 1] and for every x, y ∈ I, set x ∧ y =
min{x, y} and x ∨ y = max{x, y}. On I we define

(1) f(x1, . . . , xm) = {t ∈ I | x1 ∧ . . . ∧ xm ≤ t ≤ x1 ∨ . . . ∨ xm},
(2) g(xn

1 ) = x1 ∧ . . . ∧ xn.

Then, (I, f, g) is an (m,n)-semihyperring.

Example 4.([6]) If (L,∧,∨) is a relatively complemented distributive lattice and if
⊕ and g are defined as:

(1) a⊕ b = {c ∈ L | a ∧ c = b ∧ c = a ∧ b, a, b ∈ L},
(2) g(a, b, c) = a ∨ b ∨ c.

Then, (L,⊕, g) is a (2, 3)-semihyperring.

Example 5. Let (R, +, ·) be a semihyperring and b ∈ Z(R), this means for every
x ∈ R, x · b = b · x. Now, we set g(xn

1 ) = x1 · x2 · . . . · xn · b. Then, (R, +, g) is a
(2, n)-semihyperring.

Example 6.([6]) Let R = Z2 ×Z3. We define a hyperoperation + on R as follows:

(a, b) + (c, d) =





(0, Z3) if a + c = 0

(1, Z3) if a + c = 1

(Z2, Z3) if a + c = 2

and define a ternary multiplication g((x1, y1), (x2, y2), (x3, y3)) = (x, y) such that
x ≡ x1x2x3(mod 2) and y ≡ y1 − y2 + y3(mod 3). Then, (R, +, g) is a (2, 3)-
semihyperring.

Example 7. Let (G, ◦) be an abelian group. We define an m-ary hyperoperation
f and (2n− 1)-ary multiplication g on G in the following way:

f(x1, . . . xm) =
m⋃

i=1

{xi}, for all xm
1 ∈ R,

g(x2n−1
1 ) = y1 ◦ y2 ◦ . . . ◦ y2n−1, where yi =





xi if i is odd

x−1
i if i is even.

Then, (G, f, g) is an (m, 2n− 1)-semihyperring.

Example 8.([6]) Let G = (Z16, +, ·) and R = 2Z16. We define a binary hyperoper-
ation and a ternary multiplication on R in the following way:

x⊕ y = {x, y} and g(x, y, z) = x · y · z + 4.
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Then, g is associative, since for every x5
1 ∈ R, we have

g(g(x3
1), x

5
4) = g(x1, g(x4

2), x5) = g(x2
1, g(x5

3)) = 4.

It is not difficult to see that (R,⊕, g) is a (2, 3)-semihyperring.

Regular(strongly regular) relations play an important role in hyperstructure
theory. Let ρ be an equivalence relation on an n-ary semihypergroup (S, f). Hρ

denotes the set of equivalence classes of ρ. We denote by ρ the relation defined on
P∗(S) as follows. If A, B ∈ P∗(S), then

A ρ B ⇐⇒ a ρ b for all, a ∈ A, b ∈ B.

It follows immediately that ρ is symmetric and transitive. In general, ρ is not
reflexive. Also, we denote by ρ the relation defined on P∗(S) as follows. If A,B ∈
P∗(S), then

A ρ B ⇐⇒ for all a ∈ A, there exists b ∈ B such that a ρ b and
for all b ∈ B, there exists a ∈ A such that a ρ b.

Let (S, f) be an n-ary semihypergroup and ρ be an equivalence relation on S. Then,
ρ is a regular relation if ai ρ bi for all 1 ≤ i ≤ n then f(a1, . . . , an) ρ f(b1, . . . , bn).
Also, ρ is called a strongly regular relation if ai ρ bi for all 1 ≤ i ≤ n then
f(a1, . . . , an) ρ f(b1, . . . , bn). By a regular(strongly regular) relation on an (m,n)-
semihyperring R we mean a regular(strongly regular) relations on (R, f) and (R, g).
Mirvakili and Davvaz proved the next theorem:

Theorem 1.([23]) Let (R, f, g) be an (m,n)-semihyperring and the relation ρ be a
regular(strongly regular) relation on (R, f, g). Then, the quotient (Rρ, fρ, gρ) is an
(m,n)-semihyperring((m,n)-semiring) under fρ(ρ(x1), . . . , ρ(xm)) = ρ(f(xm

1 )) and
gρ(ρ(y1), . . . , ρ(yn)) = ρ(g(yn

1 )), for all xm
1 and yn

1 in R.

Theorem 2. Let (R, f, g) and (S, f ′, g′) be two (m,n)-semihyperrings and ϕ :
R −→ S be a homomorphism. Then, kerϕ = {(a, b) ∈ R × R | ϕ(a) = ϕ(b)} is a
regular relation on R and there exists a unique one to one homomorphism ψ from
Rkerϕ into S.

Proof. It is straightforward. 2

Corollary 3. Let (R, f, g) be an (m,n)-semihyperring and ρ, σ be two regular
relations on R with ρ ⊆ σ. Then, σρ = {(ρ(a), ρ(b)) | (a, b) ∈ σ} is a regular
relation on Rρ and (Rρ)(σρ)

∼= Rσ.

2. Hyperideals of (m,n)-Semihyperrings

Let S be a non-empty subset of an (m,n)-semihyperring (R, f, g). If (S, f, g) is
an (m,n)-semihyperring, then S is called a sub-semihyperring of R.
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Definition 5. Let (R, f, g) be an (m, n)-semihyperring. By an (i, j)-center of R
we mean the set

Zij(R) = {a ∈ R | f(xi−1
1 , a, xn−1

i ) = f(xj−1
1 , a, xn−1

j ), for xn−1
1 ∈ R}.

The set Z(R) =
n⋂

i=1

Zij(R) =
n⋂

j=1

Zij(R) is called the center of R.

Proposition 6. Let (R, f, g) be an (m,n)-semihyperring. Then,

(1) For every i, j ∈ {1, . . . , n}, Zij = Zji.

(2) If a ∈ Zij ∩ Zjk, then a ∈ Zik.

(3) If Zij(R) is non-empty, then it is a sub-semihyperring of R.

(4) If Z(R) is non-empty, then it is a maximal commutative sub-semihyperring
of R.

Proof. The proof is straightforward. 2

Definition 7. Let I be a non-empty subset of an (m,n)-semihyperring (R, f, g)
and 1 ≤ i ≤ n; we call I an (i)-hyperideal of R if

(1) I is a sub-semihypergroup of the m-ary semihypergroup (R, f), i.e., (I, f) is
an m-ary semigroup,

(2) for every xn
1 ∈ R, g(xi−1

1 , I, xn
i+1) ⊆ I.

Also, if for every 1 ≤ i ≤ n, I is an (i)-hyperideal, then I is called a hyperideal of
R.

If X is a subset of an (m,n)-semihyperring R, then < X > is the hyperideal
generated by elements of X. Let A1, . . . , An be non-empty subsets of R. We set

n∏
i=1

Ai = {f(k)([g(ain
i1 )]i=mk

i=1 ) | aij ∈ Aj ,mk = k(m− 1) + 1}.

Then,
n∏

i=1

Ai called the product of Ai.

Lemma 8. Let R be an (m,n)-semihyperring. Then,

(1) If I1, . . . , Im are hyperideals of R, then f(Im
1 ) is a hyperideal of R.

(2) If I1, . . . , Im are subsets of R and there exists 1 ≤ j ≤ n such that Ij is a

hyperideal of R and R is commutative, then
n∏

i=1

Ii is a hyperideal of R.

(3) If I1, . . . , In are hyperideals of R and
n⋂

i=1

Ii 6= ∅, then
n⋂

i=1

Ii is a hyperideal of

R and <
n∏

i=1

Ii >⊆
n⋂

i=1

Ii.
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(4) If I is a hyperideal of R and an
2 ∈ I, then f(I, an

2 ) = I.

Proof. The proof is similar to the proof of Lemma 3.4 in [23]. 2

An element ω ∈ R is called (i,j)-distinguished element of the (m,n)-semihyperring
R if it satisfies f(xi

1, ω, xm
i+1) = ω and g(yj

1, ω, yn
j+1) = ω, for all xm

1 , yn
1 ∈ R, where

1 ≤ i ≤ m and 1 ≤ j ≤ n. An element ω ∈ R is called distinguished element
of the (m,n)-semihyperring R if it is an (i, j)-distinguished for all 1 ≤ i ≤ m
and 1 ≤ j ≤ n. Every (m, n)-semihyperring can not contain two different dis-
tinguished elements. We shall always call “ω” the distinguished element of every
(m,n)-semihyperring.

Theorem 9. Let R be an (m,n)-semihyperring and ω ∈ R. Then, the following
conditions are equivalent:

(1) ω is a distinguished element of R.

(2) ω is a (1, 1)-distinguished element and an (n, n)-distinguished element of R.

(3) ω is a (1, n)-distinguished element and an (n, 1)-distinguished element of R.

(4) for some 1 < i < n, ω is an (i, 1)-distinguished element and an (i, n)-
distinguished element of R.

(5) for some 1 < j < n, ω is a (1, j)-distinguished element and an (n, j)-
distinguished element of R.

(6) for some 1 < i, j < n, ω is an (i, j)-distinguished element of R.

Proof. (1) → (2) It is clear by using the definition.
(2) → (3) It is straightforward.
(3) → (4) We have f(ω, xm

2 ) = ω, g(yn−1
1 , ω) = ω, f(xm−1

1 , ω) = ω and
g(ω, yn

2 ) = ω, for every xm
1 , yn

1 ∈ R. Now, we have

f(xi
1, ω, xm

i+1) = f(xi
1, f(xm−1

i+1 , ω, . . . , ω), xm
i+1)

= f(f(xm−1
1 , ω), ω, . . . , ω, xm

i+1)
= f(ω, ω, . . . , ω, xm

i+1)
= ω.

(4) → (5) Similar to the proof of (3) → (4), we obtain g(xj
1, ω, xm

j+1) = ω. Now,
we have

f(ω, xm
2 ) = f(f(

(m)
ω ), xm

2 )

= f(
(m−i)

ω , f(
(i)
ω , xm−i+1

2 ), xm
m−i+2)

= f(
(m−i)

ω , ω, xm
m−i+2)

. . .

= f(
(m)
ω ) = ω.
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and
f(xm−1

1 , ω) = f(xm−1
1 , f(

(m)
ω ))

= f(xm−i
1 , f(xm−1

m−i+1,
(m−i+1)

ω ),
(i−1)
ω )

= f(xm−i
1 , ω,

(i−1)
ω )

. . .

= f(
(m)
ω ) = ω.

(5) → (6) The proof is similar to the proof of (3) → (4).
(6) → (1) Let 1 < i < m and f(xi−1

1 , ω, xm
i+1) = ω for every xm

1 ∈ R. Now, for
every xm

1 ∈ R we have

f(xi−2
1 , ω, xm

i ) = f(xi−2
1 , f(

(m)
ω ), xm

i+1)

= f(xi−2
1 , ω, f(

(m−1)
ω , xi), xm

i+1)
= f(xi−2

1 , ω, ω, xm
i+1)

= ω.

In the similar way, we obtain f(xi
1, ω, xm

i+2) = ω, for every xm
1 ∈ R. Also,

in the similar way, for the m-ary operation g, we have g(xj
1, ω, xn

j+2) = ω and
g(xi−1

1 , ω, xn
i ) = ω. Hence, ω is an (h, k)-distinguished element when h = i−1, i, i+1

and k = i− 1, i, i + 1.
If we repeat the above process we obtain ω is an (h, k)-distinguished element

for every h ∈ {1, . . . ,m} and k ∈ {1, . . . , n}. 2

Definition 10. Let (R, f, g) be an (m,n)-semihyperring and I be a subset of R.
We say that I is an (i,j)-hyperideal of R, where 1 ≤ i, j ≤ n, if it satisfies:

(1) f(xi−1
1 , I, xm

i+1) ⊆ I, for all xn
1 ∈ R,

(2) g(yj−1
1 , I, yn

j+1) ⊆ I, for all yn
1 ∈ R.

If I is an (i, j)-hyperideal of R, for every 1 ≤ i, j ≤ n, then we say that I is a 2-
hyperideal of R. Indeed, a 2-hyperideal is a hyperideal of the m-ary semihypergroup
(R, f) and the n-ary semigroup (R, g).

Lemma 11. Let R be an (m, n)-semihyperring and Ik
1 be 2-hyperideals of R .

(1) If
k⋂

i=1

Ii 6= ∅ then
k⋂

i=1

Ii is a 2-hyperideal of the (m,n)-semihyperring R.

(2)
k⋃

i=1

Ii is a 2-hyperideal of the (m,n)-semihyperring R.

Proof. The proof is straightforward. 2

We say that I is an (i, j)-distinguished hyperideal, where 1 ≤ i, j ≤ n, if

(1) f(xi−1
1 , I, xm

i+1) = I, for all xn
1 ∈ R,
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(2) g(yj−1
1 , I, yn

j+1) = I, for all yn
1 ∈ R.

Let I be an (i, j)-distinguished hyperideal of R, for every 1 ≤ i, j ≤ n. Then,
we say that I is a distinguished hyperideal of R. If I and J are two distinguished
hyperideals, then it is clear that I = J.

Theorem 12. Let R be an (m, n)-semihyperring and I be a non-empty subset of
R. Then, the following conditions are equivalent:

(1) I is a distinguished hyperideal of R.

(2) I is a (1, 1)-distinguished hyperideal and an (n, n)-distinguished hyperideal of
R.

(3) I is a (1, n)-distinguished hyperideal and an (n, 1)-distinguished hyperideal of
R.

(4) for some 1 < i < n, I is an (i, 1)-distinguished hyperideal and an (i, n)-
distinguished hyperideal of R.

(5) for some 1 < j < n, I is a (1, j)-distinguished hyperideal and an (n, j)-
distinguished hyperideal of R.

(7) for some 1 < i, j < n, I is an (i, j)-distinguished hyperideal of R.

Proof. The proof is similar to the proof of Theorem 9. 2

A 2-hyperideal I of an (m, n)-semihyperring (R, f, g) generates the following
binary relation (Rees relation) on R: aρIb if and only if a = b or (a ∈ I and b ∈ I).

Lemma 13. Rees relation on an (m,n)-semihyperring (R, f, g) is a strongly regular
relation.

Proof. Let a, b, xn
1 ∈ R, 1 ≤ i ≤ n and aρIb. If a = b, then ρ(a) = ρ(b), and if

a, b ∈ I, then ρ(a) = ρ(b). Since ρ(xj) = xj or ρ(xj) = I, so

f(ρ(x1), . . . , ρ(xi−1), ρ(a), ρ(xi+1), . . . , ρ(xn))

and
f(ρ(x1), . . . , ρ(xi−1), ρ(b), ρ(xi+1), . . . , ρ(xn))

are same set and both are singleton or both are subsets of I. Since I is a 2-
hyperideal, so

f(ρ(x1), . . . , ρ(xi−1), ρ(a), ρ(xi+1), . . . , ρ(xn))

ρIf(ρ(x1), . . . , ρ(xi−1), ρ(b), ρ(xi+1), . . . , ρ(xn))

Therefore, ρI is a strongly regular relation. 2

For every x ∈ I, we have ρI(x) = I and for every x ∈ R−I we have ρI(x) = {x}.
Now, we set RρI

= R/I = {ρ(x) | x ∈ R} = {I} ∪ {{x} | x ∈ R − I}. Then, we
define
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(1) F (ρI(x1), . . . , ρI(xm)) = ρI(f(xm
1 )),

(2) G(ρI(y1), . . . , ρI(yn)) = ρI(g(yn
1 )).

Lemma 14. (R/I, F,G) is an (m,n)-semihyperring and I is the distinguished
element of R/I.

Proof. The proof is straightforward. 2

The (m,n)-semihyperring (R/I, F, G) is called the Rees factor (m,n)-semihyperring
of R modulus I.

Lemma 15. We have R/I ∼= {ω} ∪ (R− I).

Proof. The proof is straightforward. 2

Proposition 16. Let (R, f, g) be an (m,n)-semihyperring, I be a 2-hyperideal and
S be a sub-semihyperring of R. Then,

(1) I ∪ S is a subsemihyperring of R and I forms a 2-hyperideal of I ∪ S.

(2) If I ∩ S 6= ∅, then I ∩ S is a 2-hyperideal of the sub-semihyperring S.

(3) If I ∩ S 6= ∅, then (I ∪ S)/I ∼= S/(I ∩ S).

Proof. The proofs of (1) and (2) are straightforward. In order to prove (3), we have
(I ∪ S)/I ∼= ((I ∪ S)− I) ∪ {ω} = (S − (S ∩ I)) ∪ {ω} ∼= S/(I ∩ S). 2

Proposition 17. Let (R, f, g) be an (m,n)-semihyperring. Let I be a 2-hyperideal
of R and g : I −→ R/I be the natural homomorphism. Then, g induces a one-to-one
correspondence which preserves inclusion, which we also call g

g : K −→ K/I

from the set of the 2-hyperideals of R that contain I upon the set of the non-trivial
2-hyperideals of R/I. Moreover,

(R/I)/(K/I) ∼= R/K.

Proof. Suppose that K is a 2-hyperideal of R such that K ⊆ I. Then, g(K) = K/I
is a 2-hyperideal of g(R) = R/I. Now, if J is a 2-hyperideal of R/I, then g−1(J) =
K is a 2-hyperideal of R which contains I, so that g(K) = J . Therefore, g induces
a mapping from the first set of the statement onto the second. Also, g induces a
one to one map from the first set onto the second set, because g(A) = g(B) implies
A/I = B/I or A − I = B − I, and so A = B. Similarly, it is easy to see that g
preserves the inclusion. Finally, we have

(R/I)/(K/I) ∼= (R/I −K/I) ∪ {ω}
∼= ((R− I)− (K − I)) ∪ {ω}
∼= (R−K) ∪ {ω} ∼= R/K.

2
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3. (m,n)-Semihyperring of Quotients

In [8], Davvaz and Salasi studied the hyperring of fractions (quotients). In [4],
Darafsheh and Davvaz, defined the Hv-ring of fractions of a commutative hyperring.
In [3], Crombez and Timm, proved that any commutative cancellative (n,m)-ring
can be embedded into a unique (up to isomorphism) minimal (n, m)-field. Lee [17]
proved (using the well-known procedure of embedding an integral domain into a
field) that any commutative and cancellative (Ω,m)-ringoid A can be embedded
into a quotient (Ω, m)-ringoid Q(A). This extends a result of G. Crombez and J.
Timm [3].

Our aim in this section is to introduce (m,n)-semihyperring of quotients.
Let (R, f, g) be a commutative (m, n)-semihyperring with at least one can-

cellable element respect to g and let S be the set of all cancellable elements. Con-
sider the set R × Sn−1 of ordered pair (a1, (an

2 )). We introduce a relation in this
set by defining

(a1, (an
2 )) ∼ (b1, (bn

2 )) ⇐⇒ g(a1, b
n
2 ) = g(b1, a

n
2 ).

Lemma 18. The relation ∼ is an equivalence relation on R× Sn−1.

Proof. The relation is clearly reflexive and symmetric. Now, we suppose that

(a1, (an
2 )) ∼ (b1, (bn

2 )) and (b1, (bn
2 )) ∼ (c1, (cn

2 )).

Then, g(a1, b
n
2 ) = g(b1, a

n
2 ) and g(b1, c

n
2 ) = g(c1, b

n
2 ). In order to prove the transi-

tivity, we have to show that g(a1, c
n
2 ) = g(c1, a

n
2 ). We have

g(g(a1, b
n
2 ), cn

2 ) = g(g(b1, a
n
2 ), cn

2 ), (∗)
g(g(b1, c

n
2 ), an

2 ) = g(g(c1, b
n
2 ), an

2 ). (∗∗)

Since g is commutative, by (∗) and (∗∗) we obtain g(g(a1, b
n
2 ), cn

2 ) = g(g(c1, b
n
2 ), an

2 ).
Thus, g(g(a1, c

n
2 ), bn

2 ) = g(g(c1, a
n
2 ), bn

2 ). Since bn
2 are cancellable elements, we have

g(a1, c
n
2 ) = g(c1, a

n
2 ) which implies that the transitivity of ∼. 2

We now note that the equivalence class of (a1, (an
2 )) by a1

[an
2 ] . Also, we set

a1
[a1n

12 ,a2n
22 ,...,amn

m2 ]
:= a1

[g(am2
12 ),g(am3

13 ),...,g(amn
1n )]

. Let S−1R denote the set of these equiva-
lence classes. We define

F
(

a1
[a1n

12 ]
, . . . , am

[amn
m2 ]

)
= {x | x ∈ f(h(a1,amn

22 ),...,h(am,a1n
12 ,...,a

(m−1)n

(m−1)2 )

[a1n
12 ,...amn

m2 ]
}

and
G

(
a1

[a1n
12 ]

, . . . , am

[amn
m2 ]

)
= g(an

1 )

[a1n
12 ,...amn

m2 ]
,

In the definition of F , if l = k(m− 1) + 1, then l-ary hyperoperation h given by

h(xk(m−1)+1
1 ) = f(f(· · · (f(f︸ ︷︷ ︸

k

(xm
1 ), x2m−1

m+1 ), · · · ), xk(m−1)+1
(k−1)(m−1)+2)
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will be denoted by f(k). It is not difficult to see that F and G are well-defined.

Theorem 19. If (R, f, g) is any commutative (m,n)-semihyperring with at least
one cancellable element, then (S−1R,F, G) is an (m,n)-semihyperring of quotients
for R with respect to S.

Proof. The proof is straightforward. 2

Now, we say that a commutative (m,n)-semihyperring (R, f, g) has a multi-

plicative identity element e, if g(x,
(n−1)

e ) = x for all x ∈ R. We call (R, f, g) is a
unitary commutative (m,n)-semihyperring.

Example 9. Let R = Z2 and for all x, y, z ∈ R we define a ternary hyperoperation
f(x, y, z) = R and a ternary operation g(x, y, z) = x + y + z + 1 then every element
is cancellable but (R, f, g) has not a multiplicative identity element.

In this section (R, f, g, e) is a unitary commutative (m,n)-semihyperring with
a multiplicative identity element e.

Lemma 20. In every (m,n)-semihyperring (R, f, g, e) we have S 6= ∅.
Proof. If g(x,

(n−1)
e ) = g(y,

(n−1)
e ) then x = y. So e ∈ S. 2

Let (R, f, g, e) be a (m,n)-semihyperring. The map ϕe : R −→ S−1R given by
ϕe = a

[
(n−1)

e ]
is a one to one homomorphism.

Theorem 21. Let (R, f, g, e) and (R′, f ′, g′, e′) be two (m,n)-semihyperrings. Let
S be the set of all cancellable elements of R and let α : R −→ R′ be a homomorphism
of (m,n)-semihyperrings such that α(s) is a cancellabe element of R′ for all s ∈ S
and ϕ(e) = e′. Then, α induces a homomorphism α : S−1R −→ α(S)−1R′ such that
αϕe = ϕe′α.

Proof. We can verify that the map α : S−1R −→ α(S)−1R′ given by

α(
a1

[a2, . . . , an]
) =

α(a1)
[α(a2), . . . , α(an)]

is a well-defined homomorphism of (m,n)-semihyperrings such that

αϕe(a) = α( a

[
(n−1)

e ]
)

= α(a)

[
(n−1)

e′ ]

= ϕe′α(a).

2

Lemma 22. Let I be a hyperideal of R, then the set

S−1I = { a

[a2, . . . , an]
| a ∈ I, an

2 ∈ S}
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is a hyperideal of S−1R.

Proof. The proof is straightforward. 2

Lemma 23. Let I, J, Im
1 , Jn

1 be hyperideals of R. Then,

(1) S−1(I ∩ J) = S−1I ∩ S−1J ,

(2) S−1f(I1, . . . , Im) = F (S−1I1, . . . , S
−1Im),

(3) S−1g(J1, . . . , Jn) = G(S−1J1, . . . , S
−1Jn).

Proof. The proof is is straightforward. 2

Theorem 24. Let (R, f, g, e) be an (m,n)-semihyperring and I be a hyperideal of
R. Then, S ∩ I 6= ∅ if and only if S−1I = S−1R.

Proof. If u ∈ S ∩ I, then e

[
(n−1)

e ]
= g(

(n)
e )

[
(n−1)

e ]
= g(e,

(n−1)
u )

[
(n−1)

u ]
∈ S−1I. Now, for every

a1
[a2,n] ∈ S−1R we have

a1

[an
2 ]

=
g(a1,

(n−1)
e )

[an
2 ]

= G


 a1

[an
2 ]

,
e

[
(n−1)

e ]
, . . . ,

e

[
(n−1)

e ]


 ∈ S−1I

and this proves S−1R ⊆ S−1I.
Conversely, suppose that S−1I = S−1R. If we consider the natural homomor-

phism ϕe : R −→ S−1R, then ϕe(e) = e

[
(n−1)

e ]
. On the other hand, ϕe(e) ∈ S−1R,

consequently ϕe(e) ∈ S−1I and so ϕS(e) = ae
[an

2 ] for some ae ∈ I and an
2 ∈ S. Now,

we have e

[
(n−1)

e ]
= a

[an
2 ] . Thus, g(e, an

2 ) = g(a,
(n−1)

e ) = a ∈ I ∩ S. Therefore, we

obtain I ∩ S 6= ∅. 2

Theorem 25. Let I be a hyperideal of R. Then,

(1) I ⊆ ϕ−1
e (S−1I),

(2) if I = ϕ−1
e (J) for some hyperideal J in S−1R, then S−1I = J .

Proof. (1) If a ∈ I, then ϕe(a) = a

[
(n−1)

e ]
∈ S−1I. Therefore, I ⊆ ϕ−1

e (S−1I).

(2) Since I = ϕ−1
e (J), every element of S−1I is of the form a

[an
2 ] with ϕe(a) ∈ J .

Thus,
a

[an
2 ] = g(e,a,

(n−2)
e )

[an
2 ]

= G

(
e

[an
2 ] ,

a

[
(n−1)

e ]
, e

[
(n−1)

e ]
, . . . , e

[
(n−1)

e ]

)

= G
(

e
[an

2 ] , ϕe(a), ϕe(e), . . . , ϕe(e)
)

∈ J.
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Therefore, S−1I ⊆ J .
Conversely, if a

[an
2 ] ∈ J , then

ϕe(a) =
a

[
(n−1)

e ]
= G


 a

[an
2 ]

,
a2

[
(n−1)

e ]
, . . . ,

an

[
(n−1)

e ]


 ∈ J,

whence a ∈ ϕ−1
e (J) = I. Thus a

[an
2 ] ∈ S−1I and hence J ⊆ S−1I. 2

Now, we will prove some theorems concerning a congruence relation.
Let ρ be a congruence relation on semigroup (R, g), Then, we have

Lemma 26. Let (R, f, g, e) be an (m,n)-semihyperring. Then, for every a ∈ S,
ρ(a) is cancellable in Rρ.

Proof. Since e ∈ R, then ρ(e) ∈ Rρ. Now, for every ρ(x) ∈ Rρ, we have gρ(ρ(x), ρ(e),
. . . , ρ(e)) = ρ(x), i.e., ρ(e) is a neutral element of the (m,n)-semihyperring Rρ. On
the other hand, suppose that an

2 ∈ S such that

gρ(ρ(a2), . . . , ρ(ai), ρ(x), ρ(ai+1), . . . , ρ(an))
= gρ(ρ(a2), . . . , ρ(ai), ρ(y), ρ(ai+1), . . . , ρ(an)).

Then, ρ(g(ai
2, x, an

i+1)) = ρ(g(ai
2, y, an

i+1)) or g(ai
2, x, an

i+1) ρ g(ai
2, y, an

i+1). Since eρe
and ρ is a congruence, g(g(ai

2, x, an
i+1), e, . . . , e) = g(g(ai

2, y, an
i+1), e, . . . , e). Thus,

g(ai
2, x, an

i+1) = g(ai
2, y, an

i+1) which implies that x = y. 2

Theorem 27. There exists a homomorphism ψ : S−1R −→ Rρ such that ψϕe = ϕ,
i.e., the following diagram is commutative.

R
ϕe //

ϕ
ÂÂ

@@
@@

@@
@@

S−1R

ψ
||yyyyyyyy

Rρ

Proof. We define ψ : S−1R −→ Rρ by setting ψ
(

a1
[an

2 ]

)
= gρ(ρ(a1), . . . , ρ(an)) =

ρ(g(an
1 )). First, we show that ψ is well-defined. If a1

[an
2 ] = b1

[bn
2 ] , then g(an

1 ) =
g(bn

1 ) and so gρ(ρ(a1), . . . , ρ(an)) = gρ(ρ(b1), . . . , ρ(bn)). Thus, ψ is well-defined. A
routine calculation shows that ψ is a homomorphism. Finally, we have

ψϕe(a) = ψ

(
a

[
(n−1)

e ]

)
= gρ(ρ(g(a,

(n−1)
e )), ρ(e), . . . , ρ(e))

= ρ(g(g(a,
(n−1)

e ),
(n−1)

e )) = ρ(a) = ϕ(a).

2
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