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ABSTRACT. We say that (R, f, g) is an additive (m,n)-semihyperring if R is a non-empty
set, f is an m-ary associative hyperoperation, g is an n-ary associative operation and g is
distributive with respect to f. In this paper, we describe a number of characterizations
of additive (m,n)-semihyperrings which generalize well-known results. Also, we consider
distinguished elements, hyperideals, Rees factors and regular relations. Later, we give a
natural method to derive the quotient (m,n)-semihyperring.

1. Introduction

Canonical hypergroups [24] is a special class of Marty’s hypergroup [22]. The
more general structure that satisfies the ring-like axioms is the hyperring in the
general sense: (R,+, ) is a hyperring if + and - are two hyperoperations such that
(R,+) is a hypergroup and - is an associative hyperoperation, which is distributive
with respect to +. There are different notions of hyperrings. If only the addition +
is a hyperoperation and the multiplication - is a usual operation, then we say that
R is an additive hyperring. A special case of this type is the hyperring introduced
by Krasner [16]. According to [7], an additive semihyperring is a system consisting
of a set S together with a binary hyperoperation on S called hypersum and a binary
operation multiplication (denoted in the usual manner) such that (1) S together with
hypersum +, is a (commutative) semihypergroup, (2) S together with multiplication
- is a semigroup, (3) a-(b+c¢) =a-b+a-cand (a+b)-c=a-c+b-¢, for all
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a,b,ceS.

The idea of investigations of n-ary algebras, i.e., sets with one n-ary operation,
seems to be going back to Kasner’s lecture [15] at the 53rd annual meeting of the
American Association of the Advancement of Science in 1904. But the first pa-
per concerning the theory of n-ary groups was written (under inspiration of Emmy
Noether) by Dérnte in 1928 (see [12]). Since then many papers concerning var-
ious m-ary algebras have appeared in the literature, for example see [5, 25, 26].
The concept of n-ary hypergroup is defined by Davvaz and Vougiouklis in [9],
which is a generalization of the concept of hypergroup in the sense of Marty and
a generalization of n-ary group, too. Then this concept was studied by Anvariyeh,
Davvaz, Dudek, Leoreanu-Fotea Mirvakili, Vougiouklis, and others, for example see
[1, 10, 11, 14, 18, 19, 20, 21]. The concept of n-ary algebraic hyperstructures con-
stitute a generalization of well-known algebraic hyperstructures (semihypergroup,
hypergroup, hyperring and so on).

Let S be a set. A map f from S x ... x S to p*(9), the non-empty subsets
of S, where S appears n times, is called an n-ary hyperoperation. If f is an n-ary
hyperoperation defined on S, then (S, f) is called an n-ary hypergroupoid. We shall
use the following abbreviated notation: the sequence x;, z;11, ..., z; will be denoted
by xf For j <1, xz is the empty symbol. In this convention

f(ﬁcla---733i7yz‘+1»---7l/j>Zj+17~-~>Zn)

will be written as f(lenya z71). In the case when y;41 = ... = y; = y the last

o (§—i
expression will be written in the form f(z?, Jy ,Zj41)- Also, for non-empty subsets
A1, ..., A, of S we define f(AY) = f(A1,...,An) = U{f(a})|x; € A;, i =1,...n}.
An n-ary hyperoperation f is called associative if

L (G A B (Y [y Wi vy

holds for every 4,5 € {1,...,n} and all z1,22,...,22,—1 € S. An n-ary hy-
pergroupoid with the associative hyperoperation is called an n-ary semihyper-
group. An n-ary semihypergroup (S, f) is called n-ary hypergroup if for ev-
ery 2 € S and i = {1,...,n} we have f(z{"',S,20,;) = S. An n-ary hy-
pergroupoid (S, f) is commutative if for all ¢ € S, and for every af € S

we have f(ai,...,an) = f(ag@),- -, 0@n))- If af € S we denote aZE;l)) as the
Ug(1)s -+ 00(n)- An element e of S is called a neutral element (scalar neutral el-
ement) if x € f((zel),x, (ne Z))(l’ = f((lel),z, (ne Z))), forallz € Sand all 1 <i<mn.
An n-ary semihypergroup (S, f) is i-cancellative, if for every ao,...,a, € S,
f(ay,z,a? ) = f(ay,y,al, ) implies x = y, for all z,y € S. If this implication
is valid for all ¢ = 1,2,...,n, then we say that (5, f) is cancellative. If for some
az,...,an € S, f(ab,z,al ) = f(ab,y,al ) implies z = y, for all z,y € S then
the elements as, ..., a, are called cancellable.

In some papers several authors generalize the study of ordinary rings to the
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case where the ring operations are respectively m-ary and n-ary. (m,n)-rings were
studied by Crombez [2], Crombez and Timm [3], Dudek [13] and Lee [17].

Now, in this paper we study a generalization of additive semihyperrings and a
generalization of (m,n)-semirings.

Definition 1. An additive (m,n)-semihyperring is an algebraic hyperstructure
(R, f,g), which satisfies the following axioms:

(1) (R, f) is an m-ary semihypergroup,

(2) (R,g) is an n-ary semigroup,
(3) the n-ary operation g is distributive with respect to the m-ary hyperoperation
f, i.e., for every aﬁ_l,aﬁl,xi" ER, 1<i<n,

g(ai_l’ f(mvln)a azT'L+1) = f(g(ali_17$1,a?+l), e >g(ai_17xmva?+l))'

Throughout this paper, every (m,n)-semihyperring is an additive (m,n)-
semihyperring. If f is an m-ary operation then (R, f, g) is called an (m, n)-semiring.
An additive (m,n)-semihyperring is called an additive (m,n)-hyperring if (R, f) is
an m-ary hypergroup. Let (R, f, g) be an (m, n)-semihyperring such that (R, f) has
a neutral (scalar neutral) element 0, then 0 is called a zero (scalar zero) element
if g(z77',0,2%,) = 0, for every 27 € R. A special subclass of additive (m,n)-
hyperrings is the Krasner (m, n)-hyperring. We recall the following definition from
[23]. A Krasner (m,n)-hyperring is an additive (m, n)-hyperring such that (R, f) isa
canonical m-ary hypergroup and relating to the n-ary multiplication, (R, g) is an n-
ary semigroup having zero element 0. In an additive (m, n)-semihyperring (R, f, g),
fixing elements a;”_l and bg_l we obtain a hyperoperation @ and an operation ® as
follows: @y = f(z,a] ", y) and @y = f(x,b3 ', y). Choosing different elements
ay* ! and b3, we obtain different binary relations. Obviously, (R, ®,®) is an ad-
ditive semihyperring. Such obtained additive semihyperrings are called retracts of
(R, f,9). Let (R,®,®) be an additive semihyperring. Let f be an m-ary hyperop-
eration and g be an n-ary operation on R as follows: f(z}") =21 ® ... D x,, and
gyl =y10...Qyn, for all 2",y € R. Then, (R, f, g) is an (m, n)-semihyperring.

Example 1. Let N be the set of all positive integers. We define an m-ary hyper-
operation and an n-ary multiplication on IV in the following way:

flz1, .. xm) = U{x,} and g(z1,...,2,) = [] s,
i=1 i=1

Then, (N, f,g) is an (m,n)-semihyperring. It has not zero element.

Example 2. Let (R, +,-) be a semiring. We define an m-ary hyperoperation and
an n-ary multiplication on R in the following way:

(1) flx1,... &m) =< x1,...,Zy >, the ideal generated by 1, ..., z,,

(2) glat)y=a1-... xy.



518 S. Mirvakili and B. Davvaz

Then, (R, f,g) is an (m,n)-semihyperring. If R has a zero element 0, then 0 is a
zero element of (R, f,g).

Example 3. Let I be the real interval [0,1] and for every x,y € I, set x Ay =
min{z,y} and z Vy = max{z,y}. On I we define

(1) flag,..cyzm)={tel |z A ANz <t<21V...VZP}
(2) glat)=x1 A ... ANy
Then, (I, f,g) is an (m,n)-semihyperring.
Example 4.([6]) If (L, A, V) is a relatively complemented distributive lattice and if
@ and g are defined as:
(1) agb={ceL|anc=bAc=aAb, a,be L},
(2) g(a,b,c)=aVbVe.
Then, (L, ®,g) is a (2, 3)-semihyperring.
Example 5. Let (R, +,-) be a semihyperring and b € Z(R), this means for every

x € R, x-b=>b-x. Now, weset g(z}) =21 -x2-... 2, b Then, (R,+,9) is a
(2, n)-semihyperring.

Example 6.([6]) Let R = Z5 x Z3. We define a hyperoperation + on R as follows:
(0,Z3) ifa+ec=0
(a,0) + (¢,d) =< (1,Z3) ifa+c=1
(Z2,23) ifa+c=2

and define a ternary multiplication g((z1,y1), (2, 92), (x3,93)) = (x,y) such that
x = mywawz(mod 2) and y = y1 — y2 + y3(mod 3). Then, (R,+,9g) is a (2,3)-
semihyperring.

Example 7. Let (G, 0) be an abelian group. We define an m-ary hyperoperation
f and (2n — 1)-ary multiplication ¢ on G in the following way:

m

flxy, ... xm) = U {x;:}, for all 27" € R,
i=1

T; if 4is odd
2n—1
g(x1"" ) =y10y20...0yz, 1, where y; =
z; ! if i is even.

Then, (G, f,g) is an (m,2n — 1)-semihyperring.
Example 8.([6]) Let G = (Z16, +, ) and R = 2Z15. We define a binary hyperoper-

ation and a ternary multiplication on R in the following way:

z@y:{x,y} and g(I,y,Z):IyZ+4
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Then, g is associative, since for every 2° € R, we have
9 ) 1 9

9(g(x?),25) = g(z1, 9(23), x5) = g(a7, g(23)) = 4.

It is not difficult to see that (R, ®, g) is a (2, 3)-semihyperring.

Regular(strongly regular) relations play an important role in hyperstructure
theory. Let p be an equivalence relation on an n-ary semihypergroup (S, f). H,
denotes the set of equivalence classes of p. We denote by p the relation defined on
P*(S) as follows. If A, B € P*(S), then

ApB<=apb forall ac A bec B.

It follows immediately that p is symmetric and transitive. In general, p is not
reflexive. Also, we denote by p the relation defined on P*(S) as follows. If A, B €
P*(S), then

Ap B<= forallac A, there exists b € B such that a p b and
for all b € B, there exists a € A such that a p b.

Let (S, f) be an n-ary semihypergroup and p be an equivalence relation on S. Then,
p is a regular relation if a; p b; for all 1 < i < n then f(ay,...,a,) P f(b1,...,bn).
Also, p is called a strongly regular relation if a; p b; for all 1 < i < n then
flat, ... an) p f(b1,...,by). By a regular(strongly regular) relation on an (m,n)-
semihyperring R we mean a regular(strongly regular) relations on (R, f) and (R, g).
Mirvakili and Davvaz proved the next theorem:

Theorem 1.([23]) Let (R, f,g) be an (m,n)-semihyperring and the relation p be a
regular(strongly reqular) relation on (R, f,g). Then, the quotient (R,, f,,9,) s an
(m, n)-semihyperring((m, n)-semiring) under f,(p(z1),...,p(zm)) = p(f(2T")) and
9p(p(1), - - p(yn)) = p(g(y1)), for all 2" and yi in R.

Theorem 2. Let (R, f,g) and (S, f',¢") be two (m,n)-semihyperrings and ¢ :
R — S be a homomorphism. Then, kerp = {(a,b) € Rx R | p(a) = ¢(b)} is a

reqular relation on R and there exists a unique one to one homomorphism ¥ from
Ryery into S.

Proof. 1t is straightforward. |

Corollary 3. Let (R, f,g) be an (m,n)-semihyperring and p,o be two regular
relations on R with p C o. Then, o, = {(p(a),p(d)) | (a,b) € o} is a regular
relation on R, and (R,)(s,) = R, .

2. Hyperideals of (m,n)-Semihyperrings

Let S be a non-empty subset of an (m, n)-semihyperring (R, f,g). If (S, f,g) is
an (m,n)-semihyperring, then S is called a sub-semihyperring of R.
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Definition 5. Let (R, f,g) be an (m,n)-semihyperring. By an (i, j)-center of R
we mean the set
Zij(R)={a € R| f(ai " a,a}7") = f(&] " a, 277", for 277" € R}.

The set Z(R) = () Zij(R) = () Zij(R) is called the center of R.
i=1 j=1

Proposition 6. Let (R, f,g) be an (m,n)-semihyperring. Then,
(1) For everyi,j e {1,...,n}, Zij = Zj;.
(2) Ifa€ Zij N\ Zji, then a € Zyy,.
(3) If Z;;(R) is non-empty, then it is a sub-semihyperring of R.
(1)

If Z(R) is non-empty, then it is a mazimal commutative sub-semihyperring

of R.
Proof. The proof is straightforward. O

Definition 7. Let I be a non-empty subset of an (m,n)-semihyperring (R, f,g)
and 1 <7 < n; we call I an (i)-hyperideal of R if

(1) I is a sub-semihypergroup of the m-ary semihypergroup (R, f), i.e., (I, f) is
an m-ary semigroup,

(2) for every 2} € R, g(zi 4, 1, ziy) €1

Also, if for every 1 < i < n, I is an (i)-hyperideal, then I is called a hyperideal of
R.

If X is a subset of an (m,n)-semihyperring R, then < X > is the hyperideal
generated by elements of X. Let Aq,..., A, be non-empty subsets of R. We set

n

IT Ai = {fu (l9(@DN=1") | aij € Ajymi = k(m — 1) + 1}

i=1

Then, ] 4; called the product of A;.
i=1

Lemma 8. Let R be an (m,n)-semihyperring. Then,
(1) If I, ..., I, are hyperideals of R, then f(I7") is a hyperideal of R.
(2) If Ih,..., I, are subsets of R and there exists 1 < j < n such that I, is a

hyperideal of R and R is commutative, then [] I; is a hyperideal of R.
i=1

(3) If I, ..., I, are hyperideals of R and [\ I; # 0, then
i=1

(2

I; is a hyperideal of
i=1

(2
n

Rand < [[ L >C N L.
i=1 i=1
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(4) If I is a hyperideal of R and af € I, then f(I,a}) = 1I.
Proof. The proof is similar to the proof of Lemma 3.4 in [23]. 0

An element w € Ris called (i,5)-distinguished element of the (m, n)-semihyperring
R if it satisfies f(z],w,2]1,) = w and g(y],w,y},,) = w, for all 1",y € R, where
1<i<mand1l < j <n. Anelement w € R is called distinguished element
of the (m,n)-semihyperring R if it is an (i, j)-distinguished for all 1 < i < m
and 1 < j < n. Every (m,n)-semihyperring can not contain two different dis-
tinguished elements. We shall always call “w” the distinguished element of every
(m, n)-semihyperring.

Theorem 9. Let R be an (m,n)-semihyperring and w € R. Then, the following
conditions are equivalent:

(1) w is a distinguished element of R.
2) w is a (1,1)-distinguished element and an (n,n)-distinguished element of R.

)
(2)
(3) wis a (1,n)-distinguished element and an (n,1)-distinguished element of R.
(4)

4) for some 1 < i < n, w is an (i,1)-distinguished element and an (i,n)-
distinguished element of R.

(5) for some 1 < j < n, w is a (1,j)-distinguished element and an (n,j)-
distinguished element of R.

(6) for some 1l <i,j <n,w isan (i,])-distinguished element of R.

Proof. (1) — (2) Tt is clear by using the definition.

(2) — (3) Tt is straightforward.

(3) — (4) We have f(w,z}") = w, gy w) = w, f@" ' w) = w and
g(w,y%) = w, for every =7,y € R. Now, we have

Fahonali) = S f w0, o)
= f(f@ " w)w,.. ., wzil)
= flw,w,...,w,z%;)
= w.

(4) — (5) Similar to the proof of (3) — (4), we obtain g(z?,w, 2 1) = w. Now,
we have
fwag) = F(D),a)
= f((m‘*;i)af(%),fﬂgn_iﬂ)vx%fwz)
= f((m‘;i)awaxﬁfwrz)

= f(w)=w.
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and )
fartw) = f@rlf(w))
. m—i+1 1—1
— f(z;"—27f(xz:zl+1’( w+ ))7 ( w ))
= farw, )
= f((z)):w

(5) — (6) The proof is similar to the proof of (3) — (4).
(6) — (1) Let 1 < i <m and f(z} ', w,27,) = w for every 2" € R. Now, for
every 7" € R we have

i — m i— (m) m
f(le 27("-)"2:1' ) = f(xl 2af( w )’xi+1)
i— (m—1) m
= f(xl_iaw7f< w axi)axi+1)
f(lﬂi awvw7xﬁ1)
= W.

In the similar way, we obtain f(z},w,z/t,) = w, for every z* € R. Also,
in the similar way, for the m-ary operation g, we have g(x{,w,x}t +2) = w and
g(zt™ w,z?) = w. Hence, w is an (h, k)-distinguished element when h = i—1,4,i+1
and k=14¢—1,4,7+ 1.

If we repeat the above process we obtain w is an (h, k)-distinguished element
for every h € {1,...,m} and k € {1,...,n}. O

Definition 10. Let (R, f,g) be an (m,n)-semihyperring and I be a subset of R.
We say that [ is an (i,j)-hyperideal of R, where 1 < i,j < n, if it satisfies:

(1) f(ai" Lam,) C I, for all 27 € R,
(2) gyl Ly) C 1, for all yf € R.

If I is an (4, j)-hyperideal of R, for every 1 < i,j < n, then we say that I is a 2-
hyperideal of R. Indeed, a 2-hyperideal is a hyperideal of the m-ary semihypergroup
(R, f) and the n-ary semigroup (R, g).

Lemma 11. Let R be an (m,n)-semihyperring and It be 2-hyperideals of R .

?

(1) If (k] I; # 0 then
=1

?

k
I; is a 2-hyperideal of the (m,n)-semihyperring R.
=1

k
(2) U I; is a 2-hyperideal of the (m,n)-semihyperring R.
i=1
Proof. The proof is straightforward. O

We say that I is an (i, j)-distinguished hyperideal, where 1 < 4,j < n, if
(1) f(xi_lvjv xﬁl) - I, for all IT‘ & R,
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(2) g(y{fl,f,yﬁ_l) =1, for all y}" € R.

Let I be an (i,7j)-distinguished hyperideal of R, for every 1 < 4,5 < n. Then,
we say that I is a distinguished hyperideal of R. If I and J are two distinguished
hyperideals, then it is clear that I = J.

Theorem 12. Let R be an (m,n)-semihyperring and I be a non-empty subset of
R. Then, the following conditions are equivalent:

(1) I is a distinguished hyperideal of R.

(2) I isa(1,1)-distinguished hyperideal and an (n,n)-distinguished hyperideal of
R.

(3) I is a (1,n)-distinguished hyperideal and an (n, 1)-distinguished hyperideal of
R.

(4) for some 1 < i < n, I is an (i,1)-distinguished hyperideal and an (i,n)-
distinguished hyperideal of R.

(5) for some 1 < j < n, I is a (1,5)-distinguished hyperideal and an (n,j)-
distinguished hyperideal of R.
(7) for some 1 <i,j <n, I isan (i,j)-distinguished hyperideal of R.
Proof. The proof is similar to the proof of Theorem 9. a

A 2-hyperideal I of an (m,n)-semihyperring (R, f,g) generates the following
binary relation (Rees relation) on R: aprb if and only if a=bor (a € I and b € I).

Lemma 13. Rees relation on an (m,n)-semihyperring (R, f, g) is a strongly reqular
relation.

Proof. Let a,b,2} € R, 1 < i < n and apsb. If a = b, then p(a) = p(b), and if
a,b € I, then p(a) = p(b). Since p(z;) = z; or p(x;) =1, so

f(P(xl), s 7p(x’i—1)’p(a)v p(xi-i-l)’ s 70(3)”))
and
f(p($1)7 s 7p(xi*1)7p(b)7p(xi+l)7 s 7/)(5571))

are same set and both are singleton or both are subsets of I. Since I is a 2-
hyperideal, so

f(p(xl)v s 7p(xi*1)7p(a)a p(xiJrl)v s vp(xn))
ﬁf(p(xl)a s ’p(xi—l)a p(b)7p(xi+1)’ s ’p(xn))

Therefore, pr is a strongly regular relation. a

For every x € I, we have py(z) = I and for every x € R—I we have p;(x) = {z}.
Now, we set R,, = R/I = {p(z) | x € R} = {I} U{{z} | « € R — I}. Then, we
define
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(1) Flpr(x1),. .-, pr(wm)) = pr(f(21")),

(2) Glpr(y1)s- -, pr(yn)) = pr(g(yi))-
Lemma 14. (R/I,F,G) is an (m,n)-semihyperring and I is the distinguished
element of R/I.
Proof. The proof is straightforward. O
The (m,n)-semihyperring (R/1I, F, G) is called the Rees factor (m,n)-semihyperring
of R modulus I.
Lemma 15. We have R/I = {w} U (R —I).
Proof. The proof is straightforward. O

Proposition 16. Let (R, f,g) be an (m,n)-semihyperring, I be a 2-hyperideal and
S be a sub-semihyperring of R. Then,

(1) TUS is a subsemihyperring of R and I forms a 2-hyperideal of I U S.
(2) IfINS #0, then INS is a 2-hyperideal of the sub-semihyperring S.
(3) IfINS #0Q, then (IUS)/I=S/(INS).

Proof. The proofs of (1) and (2) are straightforward. In order to prove (3), we have
TUuS)/I=(TUuS)—DU{w}=(S—=(SNI)U{w}=S/(INS). O

Proposition 17. Let (R, f,g) be an (m,n)-semihyperring. Let I be a 2-hyperideal
of R and g : I — R/I be the natural homomorphism. Then, g induces a one-to-one
correspondence which preserves inclusion, which we also call g

g: K — K/I

from the set of the 2-hyperideals of R that contain I upon the set of the non-trivial
2-hyperideals of R/I. Moreover,

(R/T)/(K/I) = R/K.

Proof. Suppose that K is a 2-hyperideal of R such that K C I. Then, g(K) = K/I
is a 2-hyperideal of g(R) = R/I. Now, if J is a 2-hyperideal of R/I, then g~1(J) =
K is a 2-hyperideal of R which contains I, so that g(K) = J. Therefore, g induces
a mapping from the first set of the statement onto the second. Also, g induces a
one to one map from the first set onto the second set, because g(A) = ¢g(B) implies
A/I = B/Tor A—1 =B —1, and so A = B. Similarly, it is easy to see that ¢
preserves the inclusion. Finally, we have

(R/D)/(K/T) = (R/I - K/I) U{w}
(R—=1) = (K = 1)) U{w}

(R— K)U{w} = R/K.

1R 1R
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3. (m,n)-Semihyperring of Quotients

In [8], Davvaz and Salasi studied the hyperring of fractions (quotients). In [4],
Darafsheh and Davvaz, defined the H,-ring of fractions of a commutative hyperring.
In [3], Crombez and Timm, proved that any commutative cancellative (n, m)-ring
can be embedded into a unique (up to isomorphism) minimal (n,m)-field. Lee [17]
proved (using the well-known procedure of embedding an integral domain into a
field) that any commutative and cancellative (€2, m)-ringoid A can be embedded
into a quotient (2, m)-ringoid Q(A). This extends a result of G. Crombez and J.
Timm [3].

Our aim in this section is to introduce (m, n)-semihyperring of quotients.

Let (R, f,g) be a commutative (m,n)-semihyperring with at least one can-
cellable element respect to g and let S be the set of all cancellable elements. Con-
sider the set R x S"~1 of ordered pair (ay, (a})). We introduce a relation in this
set by defining

(a1, (a3)) ~ (br, (b3)) <= g(a,b3) = g(b1, a3).

Lemma 18. The relation ~ is an equivalence relation on R x S™~ 1.

Proof. The relation is clearly reflexive and symmetric. Now, we suppose that

(a1, (az)) ~ (b1, (by)) and (b1, (b3)) ~ (e1, (¢3))-

Then, g(a1,b%) = g(b1,ay) and g(by,cy) = g(c1,b%). In order to prove the transi-
tivity, we have to show that g(a1,cy) = g(c1,al). We have

Since g is commutative, by (%) and (x*) we obtain g(g(a1, b%),c%) = g(g(c1,b%), al).
Thus, g(g(a1,c5),b5) = g(g(c1,ak),by). Since by are cancellable elements, we have

g(a1,cy) = g(c1,a¥) which implies that the transitivity of ~. a
We now note that the equivalence class of (a1, (a¥)) by [Z—;] Also, we set

2
ay R a —1 fra_
G erd] T @) e @ e Let S™'R denote the set of these equiva

lence classes. We define

mn in (m—1)n
[aiz]? """ [an3] lais,..ams
and
G- .. . —am )= _ o)
[aiz]” " lapis lai3,..a;5]

In the definition of F', if [ = k(m — 1) + 1, then l-ary hyperoperation h given by

By = PG P, 22000 )2 ) )
k
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will be denoted by f(1). It is not difficult to see that F' and G are well-defined.

Theorem 19. If (R, f,q) is any commutative (m,n)-semihyperring with at least
one cancellable element, then (S™'R, F,G) is an (m,n)-semihyperring of quotients
for R with respect to S.

Proof. The proof is straightforward. O
Now, we say that a commutative (m,n)-semihyperring (R, f,g) has a multi-

-1
plicative identity element e, if g(z, (ne )) =z for all x € R. We call (R, f,g) is a
unitary commutative (m, n)-semihyperring.

Example 9. Let R = Z5 and for all z,y, z € R we define a ternary hyperoperation
f(z,y,2) = R and a ternary operation g(z,y,2) = z+y+ z+ 1 then every element
is cancellable but (R, f, g) has not a multiplicative identity element.

In this section (R, f,g,e) is a unitary commutative (m,n)-semihyperring with
a multiplicative identity element e.

Lemma 20. In every (m,n)-semihyperring (R, f,g,e) we have S # (.
(n—1) (n1)

Proof. It g(x, e ") = g(y, ) then x =y. Soe € S. O
Let (R, f,g,e) be a (m, n)-semihyperring. The map ¢, : R — S™!R given by
e = 4,257 1s a one to one homomorphism.
e’]

Theorem 21. Let (R, f,g,¢e) and (R, f',¢’,€’) be two (m,n)-semihyperrings. Let
S be the set of all cancellable elements of R and let o : R — R’ be a homomorphism
of (m,n)-semihyperrings such that a(s) is a cancellabe element of R’ for all s € S
and ¢(e) = ¢'. Then, a induces a homomorphism @ : ST'R — «(S) 'R’ such that
Qe = Perr.

Proof. We can verify that the map @: SR — «(S) 'R’ given by

_ a B a(a)
o] ™ Talan) ot

is a well-defined homomorphism of (m, n)-semihyperrings such that

a@e(a) = a( [(7L(i1)])
— o
(1)
[ e ]

= peafa).

Lemma 22. Let I be a hyperideal of R, then the set

S™r={ |ael,a} €8S}

[ag, ..., an]
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is a hyperideal of S™'R.
Proof. The proof is straightforward. |

Lemma 23. Let I,J, 17", J{" be hyperideals of R. Then,
(1) S~YInJ)y=S"tIns1J,
(2) S7Yf(L,...,I,)=F(S'I,...,8711,),
(3) S7tg(J1,. . Jn) =G(S™ Iy,..., ST T,).
Proof. The proof is is straightforward. O

Theorem 24. Let (R, f,g,e) be an (m,n)-semihyperring and I be a hyperideal of
R. Then, SNI # 0 if and only if S™'I = S™'R.

() (n-1)
Proof. If w € SN I, then -5 = ?7(:1)) = g(i;ff) ) € S~1I. Now, for every
[ e’] [ e’] [ u]

h‘;—ln] € S7IR we have

ay g(a; (ngl)) ay e e

— = =G| == e S

a? al a?]’ (n=1).7"""7 (n-1)

@l " ) ] Ty e

and this proves ST'R C S~1I.
Conversely, suppose that S~'T = S~'R. If we consider the natural homomor-
phism ¢, : R — S7IR, then ¢.(e) = —¢ On the other hand, ¢.(e) € S7!R,

(el

consequently ¢.(e) € S71I and so ps(e) = 2

for some ae € I and a3 € S. Now,

= [a3]
n—1
we have [(n;)] = ﬁ Thus, g(e,ab) = g(a,( e )) = a € INS. Therefore, we
obtain I NS # 0. O

Theorem 25. Let I be a hyperideal of R. Then,

(1) T (57D),

(2) if I = o 1(J) for some hyperideal J in STR, then S™1I = J.
Proof. (1) If a € I, then ¢.(a) = —%— € S7'I. Therefore, I C o 1(S7'1).

(n—1)
e

(2) Since I = ¢ 1(J), every element of S™11 is of the form ﬁ with @.(a) € J.
Thus,

o _ g(e7a’("gz))
az] [a3]
= G Ln, ng ) ni PR nf )
la%] [( el)] [( el)] [( el)]

= G (g pel@) (e el0)
e J
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Therefore, S~ C J
Conversely, if [ m] € J, then

(a) a a as an,
Pel@) = — = T ni’ ) 3
¢ (ngl) [a%] [(”gl) ("gl)

[e] ] [e’]
whence a € p;1(J) = 1. Thus i € S7 '] and hence J C S~'I. O

€ J,

Now, we will prove some theorems concerning a congruence relation.
Let p be a congruence relation on semigroup (R, g), Then, we have

Lemma 26. Let (R, f,g,e) be an (m,n)-semihyperring. Then, for every a € S,
p(a) is cancellable in R,.

Proof. Since e € R, then p(e) € R,. Now, for every p(z) € R,, we have g,(p(z), p(e),
..,p(e)) = p(x), i.e., p(e) is a neutral element of the (m,n)-semihyperring R,. On
the other hand, suppose that af € .S such that

90(p(a )7-~- ( i), p(), p@ita), - - plan))

= 9p(p(az), ..., plai), p(y), plait1), - .., plan)).
Then, p(g(ah,z,a?, 1)) = p(g(qé,y, a?,y)) or g(ah, z, aty1) p g(ab,y,al ). Since epe
and p is a congruence, g(g(as,x,ajtq),e,...,€) = g(g(ay,y,altq),e, ... e). Thus,
g(as,z,ai ;) = g(ab,y,ai ;) which implies that = y. O

Theorem 27. There exists a homomorphism ¢ : ST'R — R, such that (. = ¢,
i.e., the following diagram is commutative.

R—>S 'R

N A

Proof. We define ¢ : ST'R — R, by setting v ([a2 ) = gp(p( 1),..,play)) =

p(g(at)). First, we show that 1 is well-defined. If [a"] = [b"]’ then g(al) =

g(b}) and so g,(p(a1), ..., plan)) = gp(p(b1), ..., p(bn)). Thus, ¥ is well-defined. A
routine calculation shows that v is a homomorphism. Finally, we have

(n—1)

e(a) —w(hiw)ngmmm )

= p(g(g(a, "), ")) = pla) = pla).
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