• Title/Summary/Keyword: Generalized fractional integral operators

Search Result 37, Processing Time 0.025 seconds

ON CERTAIN GENERALIZED q-INTEGRAL OPERATORS OF ANALYTIC FUNCTIONS

  • PUROHIT, SUNIL DUTT;SELVAKUMARAN, KUPPATHAI APPASAMY
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1805-1818
    • /
    • 2015
  • In this article, we first consider a linear multiplier fractional q-differintegral operator and then use it to define new subclasses of p-valent analytic functions in the open unit disk U. An attempt has also been made to obtain two new q-integral operators and study their sufficient conditions on some classes of analytic functions. We also point out that the operators and classes presented here, being of general character, are easily reducible to yield many diverse new and known operators and function classes.

SOME FAMILIES OF INFINITE SERIES SUMMABLE VIA FRACTIONAL CALCULUS OPERATORS

  • Tu, Shih-Tong;Wang, Pin-Yu;Srivastava, H.M.
    • East Asian mathematical journal
    • /
    • v.18 no.1
    • /
    • pp.111-125
    • /
    • 2002
  • Many different families of infinite series were recently observed to be summable in closed forms by means of certain operators of fractional calculus(that is, calculus of integrals and derivatives of any arbitrary real or complex order). In this sequel to some of these recent investigations, the authors present yet another instance of applications of certain fractional calculus operators. Alternative derivations without using these fractional calculus operators are shown to lead naturally a family of analogous infinite sums involving hypergeometric functions.

  • PDF

FRACTIONAL CALCULUS AND INTEGRAL TRANSFORMS OF INCOMPLETE τ-HYPERGEOMETRIC FUNCTION

  • Pandey, Neelam;Patel, Jai Prakash
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.127-142
    • /
    • 2018
  • In the present article, authors obtained certain fractional derivative and integral formulas involving incomplete ${\tau}$-hypergeometric function introduced by Parmar and Saxena [14]. Some interesting special cases and consequences of our main results are also considered.

Fredholm Type Integral Equations and Certain Polynomials

  • Chaurasia, V.B.L.;Shekhawat, Ashok Singh
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.4
    • /
    • pp.471-480
    • /
    • 2005
  • This paper deals with some useful methods of solving the one-dimensional integral equation of Fredholm type. Application of the reduction techniques with a view to inverting a class of integral equation with Lauricella function in the kernel, Riemann-Liouville fractional integral operators as well as Weyl operators have been made to reduce to this class to generalized Stieltjes transform and inversion of which yields solution of the integral equation. Use of Mellin transform technique has also been made to solve the Fredholm integral equation pertaining to certain polynomials and H-functions.

  • PDF

ANALYTICAL AND APPROXIMATE SOLUTIONS FOR GENERALIZED FRACTIONAL QUADRATIC INTEGRAL EQUATION

  • Abood, Basim N.;Redhwan, Saleh S.;Abdo, Mohammed S.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.497-512
    • /
    • 2021
  • In this paper, we study the analytical and approximate solutions for a fractional quadratic integral equation involving Katugampola fractional integral operator. The existence and uniqueness results obtained in the given arrangement are not only new but also yield some new particular results corresponding to special values of the parameters 𝜌 and ϑ. The main results are obtained by using Banach fixed point theorem, Picard Method, and Adomian decomposition method. An illustrative example is given to justify the main results.

A GRÜSS TYPE INTEGRAL INEQUALITY ASSOCIATED WITH GAUSS HYPERGEOMETRIC FUNCTION FRACTIONAL INTEGRAL OPERATOR

  • Choi, Junesang;Purohit, Sunil Dutt
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.81-92
    • /
    • 2015
  • In this paper, we aim at establishing a generalized fractional integral version of Gr$\ddot{u}$ss type integral inequality by making use of the Gauss hypergeometric function fractional integral operator. Our main result, being of a very general character, is illustrated to specialize to yield numerous interesting fractional integral inequalities including some known results.

GENERALIZED FRACTIONAL DIFFERINTEGRAL OPERATORS OF THE K-SERIES

  • Gupta, Rajeev Kumar;Shaktawat, Bhupender Singh;Kumar, Dinesh
    • Honam Mathematical Journal
    • /
    • v.39 no.1
    • /
    • pp.61-71
    • /
    • 2017
  • In the present paper, we further study the generalized fractional differintegral (integral and differential) operators involving Appell's function $F_3$ introduced by Saigo-Maeda [9], and are applied to the K-Series defined by Gehlot and Ram [3]. On account of the general nature of our main results, a large number of results obtained earlier by several authors such as Ram et al. [7], Saxena et al. [14], Saxena and Saigo [15] and many more follow as special cases.

Certain Subclasses of k-uniformly Functions Involving the Generalized Fractional Differintegral Operator

  • Seoudy, Tamer Mohamed
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.243-255
    • /
    • 2018
  • We introduce several k-uniformly subclasses of p-valent functions defined by the generalized fractional differintegral operator and investigate various inclusion relationships for these subclasses. Some interesting applications involving certain classes of integral operators are also considered.

SOME PROPERTIES OF GENERALIZED HYPERGEOMETRIC FUNCTION

  • Rao, Snehal B.;Patel, Amit D.;Prajapati, Jyotindra C.;Shukla, Ajay K.
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.303-317
    • /
    • 2013
  • In present paper, we obtain functions $R_t(c,{\nu},a,b)$ and $R_t(c,-{\mu},a,b)$ by using generalized hypergeometric function. A recurrence relation, integral representation of the generalized hypergeometric function $_2R_1(a,b;c;{\tau};z)$ and some special cases have also been discussed.

CERTAIN FRACTIONAL INTEGRALS AND IMAGE FORMULAS OF GENERALIZED k-BESSEL FUNCTION

  • Agarwal, Praveen;Chand, Mehar;Choi, Junesang;Singh, Gurmej
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.423-436
    • /
    • 2018
  • We aim to establish certain Saigo hypergeometric fractional integral formulas for a finite product of the generalized k-Bessel functions, which are also used to present image formulas of several integral transforms including beta transform, Laplace transform, and Whittaker transform. The results presented here are potentially useful, and, being very general, can yield a large number of special cases, only two of which are explicitly demonstrated.