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A GRUSS TYPE INTEGRAL INEQUALITY ASSOCIATED
WITH GAUSS HYPERGEOMETRIC FUNCTION
FRACTIONAL INTEGRAL OPERATOR

JUNESANG CHOI AND SUNIL DuTT PUROHIT

ABSTRACT. In this paper, we aim at establishing a generalized fractional
integral version of Griiss type integral inequality by making use of the
Gauss hypergeometric function fractional integral operator. Our main
result, being of a very general character, is illustrated to specialize to
yield numerous interesting fractional integral inequalities including some
known results.

1. Introduction

The study of inequalities is an important research subject in mathemati-
cal analysis. The inequality technique is also one of the useful tools in the
study of special functions and theory of approximations. Particularly, the frac-
tional integral inequalities have many applications in numerical quadrature,
transform theory, probability, and statistical problems. One of the most useful
applications is to establish uniqueness of solutions in fractional boundary value
problems. For detailed applications on the subject, one may refer to [1], [2], [3],
[4], 5], [6], [18], [19], [23], [24], [31], [32], [33], [44], [46], [50], and the references
cited therein.

In [27], Griiss proved a very useful and (now) well-known inequality, which
establishes a connection between the integral of the product of two functions
and the product of the integrals of individual functions. The Griiss inequality
[27] (see also [37, p. 296]) is given as follows:

Let f and g be two continuous functions defined on [a,b] such that m <
ft) < M and p < g(t) < P for all t € [a,b] and some real constants m, M, p,
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P. Then the following inequality holds true:

b b b
ﬁ/ f(t)g(t)dt—ﬁ/ f(t)dt/ g (t)dt

< (M —m)(P ~p)

(1)

where the constant 1/4 is the best possible.

In the theory of approximations, Chebyshev and Griiss inequalities (see, e.g.,
[9], [10] and [37]) are useful to give a lower bound or an upper bound for certain
functionals. Therefore, several generalizations of this type of integral inequality
have been extensively addressed by researchers (see, e.g., [16], [20], [21], [22],
[25], [26], [29], [34], [35], [36], [39], [40], [41], [49]). Moreover, by applying
fractional integral operators and fractional g-integral operators, many authors
have obtained a lot of fractional integral inequalities, their g-analogues and
applications (see, e.g., [7], [11], [12], [13], [14], [17],[28], [38], [42], [43], [51], and
the references cited therein).

Recently, Dahmani et al. [17] used Riemann-Liouville fractional integral op-
erators to unify the Griiss integral inequality as follows:

Let f and g be two integrable functions defined on [0,00) with constant
bounds as follows:

m< f)<M and p<gt)<P (0<t<o0)

for some m, M, p, P € R. Then, for a > 0,

@) T 09 - T O
to 2
< <m) (M —m)(P —p),

where I f(t) denotes the familiar Riemann-Liouville fractional integral opera-
tor of a function f(¢) and I is the familiar Gamma function.

In the sequel, by replacing the constants appeared as bounds of the functions
f and g by four integrable functions, Tariboon et al. [47] and Baleanu et al. [8]
investigated more general forms of the inequality (2), involving the Riemann-
Liouville and Saigo fractional integral operators, respectively. In this paper,
we aim at establishing a new integral inequality involving Gauss hypergeomet-
ric function fractional integral operators introduced by Curiel and Galué [15],
which generalizes the Griiss integral inequality with integrable functions whose
bounds are also four integrable functions. Some interesting special cases of our
main result are also considered.

For our purpose, we begin by recalling basic definitions and notations of some
well-known operators of fractional calculus. Let o > 0, up > —1, 8,7 € R. Then

a generalized fractional integral I/ of order a for a real-valued continuous
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function f(t) is defined by [15] (see also [11, 12, 30]):
(B) L0}

t_o‘_ﬂ_Qﬂ t " T g
Sy T P T A Y
[ = e (0 B st = ) f(r)ar
where the function oF}(-) appearing as a kernel for the operator (3) is the
familiar Gaussian hypergeometric function.
Following Curiel and Galué [15], the operator (3) would reduce immediately
to the extensively investigated Saigo, Erdélyi-Kober and Riemann-Liouville

type fractional integral operators given, respectively, as follows (see [30] and
[45]; see also [11, 12]):

@) I/ {0}

_ P () =

- /t(t —r)eTl R (a + 8, —mas 1 — %) f(r)dr

(=)

(a >0, B,n €R),
(5)
197 {f(t)} = IO {f (1)} =

2

I'(«)

/()(1&—7‘)0‘_1 f(r)dr (a>0,n€R)

and

©) RO =10} = i [0 dr (@0
Further, for f(¢t) =t* in (3), we get (¢f. [7])

aBmp g1y L+ NN =B+1) A—B—p—
(7) It n#{t 1}7F()\—5)F(A+u+a+n)t " 15

where a, B, A €ER, u> -1, u+A>0and A—5+n > 0.

2. A generalized Griiss type integral inequality

Here we establish a generalized integral inequality involving fractional hy-
pergeometric operators (3) which gives an estimation for the fractional integral
of a product of two functions in terms of the product of the individual function
fractional integrals. To do this, we first give a functional relation for the frac-
tional hypergeometric operators associated with a bounded integrable function
asserted by the following lemma.

Lemma. Suppose f, p1 and oo are integrable functions defined on [0,00) such
that

(8) e1(t) < f(t) < @2(t) (T €[0,00)).
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Then the following relation holds true: For t > 0, a > max{0,—08 — u}, pu >
—1,8<land f—1<n<0,

(9)
P+l =B+nt=" 45, B,
R e C AU U0
= (I My (b) — TP F () (TP f (1) — I (1))

F(l + H)F(l B ﬂ + 77)157[#“ o,B,n, 1
T o 1 ealt) = FO)F )~ 1 6)

T+ A =B+t s,
ru—ﬁﬁﬂ+u+a+n)g Bl

I'(1 I'(1 — —B—u N . X
I(‘(lJr_MB))I(‘(l +ﬂu++77;t+ - TP G (8 F(£) — TPy (1) TP 0 £ (1)

D1+ — B+t P
_,_puﬂﬂhu t Iwﬂ,n,u ) — JBm t ).

Proof. For the functions in (8), and any 7, p > 0, we find that

(10)  (p2(p) = f(P)(f(7) = @1(7)) + (p2(T) = F(T))(f(p) — ¥1(p))
= (p2(7) = F(O)(f(T) = @1(7)) — (p2(p) — f(p))(f(p) — ¢1(p))
= F2(7) + F2(p) = 2 (1) f(p) + 02(p) F() + 01(7) f(p) — o1 (T)02(p)
+p2(7) f(p) +@1(p) f(T) — p1(p)p2(T) — pa(T) f
f )e2(p) — e1(p) f

R ()1 (1)

—o1(T) (1) = w2(p) f(p) + p1(p)p2(p) — 1(p) f(p
Consider
(11)
—a—B—QHTM _r a—1 T
F(t,T):t F(a()t ) 2F1(a+ﬂ+u,*n;a;1*g)
o =0 s By (—1)°
I(a) totp+2u I(a+1) toat+B+2u+1
o+ B+ ma+B+p+1)(=n(-n+1) -7

2T (o +2) patprzrz

where 7 € (0, ¢) and ¢t > 0. Multiplying both sides of (10) by F(¢,7) and
integrating the resulting relation with respect to 7 from 0 to ¢, and using (3),
we get

(12) (p2(p) = F(P) I (1) = I P (8)
+ (PP () = TP f(8)) (f () = #1(p))
— I (a(t) = F(O)(F(E) = 1 (2))
— (p2(p) = F(P))(f(p) = pr(P) I {1}
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= IR E2 () + f2(p) 1P (1) = 2F (o) I (8) + pa(p) I £ ()
+ F(PIEP 01 () = oo (p) I o () + F(p) I oo (1)
+ o1 (p) I () = o1 (p) I M ps (£) — TP oo (1) £(2)
PGy (8o (8) — TP o1 () F(E) — pa(p) F(p) P {1}
+1(p)p2(p) I {1} — o1 (p) () I {1}

Next, multiplying both sides of (12) by F(¢,p) (p € (0, t), t > 0) in (11), and
integrating with respect to p from 0 to ¢, we obtain

(13)
QL g () — TP F()) (1P (1) — TP (1)
2P galt)— FONFE) — (I (1)
= I P () 1P () g (18P (1)) 20 (1)1 7 (1)
QLI (1) IRy (1) (1) + 21 o (1) £ (1)
QLI (1) IR (1) (1) — 21 (1) g (1)
2B TP (1) o),

which, upon using the image formula (7), leads to the desired result (9). O

) =
) =

Now, we give our main result satisfying the Cauchy-Schwarz type inequality
asserted by the following theorem.

Theorem. Assume that f and g are two integrable functions on [0,00) and
©1, P2, 1 and Yo are four integrable functions on [0,00) such that

(14) P1(t) < f(t) < @a(t), Pa(t) < g(t) < ea(t) (¢ € [0,00)).
Then the following inequality holds true: For t > 0, a > max{0,—f — u},
u>—-1,6<land f—1<n<0,
FF(E;Fuﬂ)fp(h_fjjffn)u TP E (1) g(t) — TOPH F () TP g (1)
< VT (fe1.02) T(g,91,92),
where
(16)  T(u,v,w) = (L7 w(t) — I () (I M u(t) — I (b))
— —B—p
_ If"ﬁ’"’“v(t)lf"ﬁ’"’“u(t)
DL 0= B4 P s
M1-BT(1+p+a+n) *

(15)

w(t)u(t)
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() TP () T (1) TP 1

T+ T =Bt s
PO BT +ptatn e

Proof. We begin, for convenience, by defining a function H(-,-) by
(17) H(mp)=(f (1) =) (g(T) —g(p) (>0, 0<T, p<t),

where f and g are two integrable functions on [0, co) satisfying the inequality
(14). Upon multiplying both sides of (17) by F(t,7) F(t, p), where F(t,7) and
F(t,p) are given by (11), and integrating with respect to 7 and p, respectively,
from 0 to ¢, we obtain

i 2oa—2f—dp a—1 a—1 T
(18) % (a) // t—7)"" (t—p) 2F1(04+5+H7*77;04;1*E)
X o (a + B+ =51 — %)) ™ ptH(T, p) dTdp

_ T+ -4+t B
FA—-Br(1+pu+a+n) *
Now, by applying the Cauchy-Schwarz inequality, we have
(19)

F(D)g(t) = P f (TP g ().

F(1+M)F(1 *ﬂ+77)t7ﬂ7“ a,B,m,1 aﬁn,u aﬁn,u ?
(a2 P £ ()gl0) = 12 01 4(0)
P+ =B+t " s _(ra.Bmu 2
= ( F(1-AT(1+p+a+mn) g F®) (It f(t)) )
P+ A =B+t " s o ([ ya.Bm.p 2
: ( P =BT +p+a+n) f g () (It g(t)) >

On the other hand, we observe that each term of the series in (11) is positive,
and hence, the function F(¢,7) remains positive, for all 7 € (0,¢) (¢ > 0).
Therefore, under the hypothesis of Lemma, it is obvious to see that either if a
function f is integrable and nonnegative on [0, co), then I°*# f(t) > 0; or if

a function f is integrable and nonpositive on [0, 00), then I®7™# f(¢) < 0.
Now, by noting the relation that, for all ¢ € (0, c0),
)

(p2(t) = FA(f() —pr1(t)) >0 and  (a(t) — g(t))(g(t) —1(t)) >0
we have

D(1+ )T (1 = B+ )5

r1—-g)r(l+u+a+mn)

TP (oo (8) — FN(F(E) — @1(t) >0

and

D1+ — B+t s,
FA-BT1+p+a+n) L (12(t) — g(t))(g(t) — 11(t)) = 0.
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Thus, using Lemma, we obtain
(20)
(1 INC t=h—n 2
(L= O pein o) — (b))
r1-/r(l+p+a+n)
< (IO po () — I F(0) (TP F(t) — TP (1))
F(l + M)F(l B 6 + U)t_ﬂ_” Ia,ﬁ,n,,u
P1-BT(l+p+a+n) *
IR oo (1) f(t) — I T (1) ISP F(t
(1 + p)(1 =B+t JoBmn
M(1-B)I(1+p+a+n '

Pr(t)f (1) = TPy (TP (2

+ [ta”@,n,u@l (t)Ita’B’"’“gog (t) _

= T(fa P1, 902)

A similar argument will give the following inequality:
(21) F(l + M)F(l - ﬁ + U)t_ﬂ_” Ia,ﬂ,’r],u
P1-BT(1+p+a+n) *

Finally, making use of the inequalities (19), (20) and (21), we are immediately
led to the desired inequality (15). This completes the proof of Theorem. [

P1(t)pa(t)

0~ (1257 9(0)) <T(g, v, ).

3. Consequent results and special cases

By virtue of the unified nature of the fractional hypergeometric operators
(3), a large number of new and known integral inequalities involving Saigo,
Erdélyi-Kober and Riemann-Liouville fractional integral operators are seen to
follow as special cases of our main result. Indeed, by suitably specializing the
values of parameters «, 8, n and p, the inequality (15) in Theorem would
yield further Griiss type integral inequalities involving the above-mentioned
integral operators. For example, if we set p = 0 in Theorem and use (4),
the inequality (15) gives a known result involving Saigo’s fractional integral
operators, recently, introduced by Baleanu et al. [8]. For another example, if
we put p = 0 and replace S by —« in Theorem, and make use of the relation
(5), we find that the reduced final result is equal to the known result due to
Tariboon et al. [47, p. 5, Theorem 9].

If we put p1(t) = m, @a(t) = M, ¥1(t) = p and 2(t) = P, where
m,M,p, P € Rand t € [0,00), we obtain a fractional integral inequality, which
was obtained by Wang et al. [48] in a slightly different form, asserted by the
following corollary.

Corollary 1. Let f and g be two integrable functions on [0, 0o) satisfying the
following inequalities

(22) m< ft) <M and p<gt)<P (te]0,00)),
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where m, M, p and P are real constants. Then the following inequality holds
true: Fort >0, a >max{0,—f —pu}, p>-1,8<land f—-1<n<0,

(23) D(1+ (1 —B+n)trPH

Fr1-pr(l+p+a+n)

- (F(l + )1 =B +n)t=F-r

“\TA-8TQ+pu+a+mn)

It is noted that setting p = 0 and replacing 8 by —« in (23), and making
use of the relation (5) yields the known result due to Dahmani et al. [17].

Furthermore, if we take @1 (t) =t, p2(t) =t + 1, 1(t) =t — 1 and 2(t) =

t in Theorem, and using formula (7), we obtain another fractional integral
inequality asserted by the following corollary.

P ()g(8) = 1O P11 (1)

)?M—mWLm»

Corollary 2. Assume that f and g be two integrable functions on [0, 00) such
that

(24) t<ft)<t4+1 and t—-1<gt)<t (t€]0,0)).

Then the following inequality holds true: For t > 0, a > max{0,—0 — u},
u>—-1,6<land B—1<n<0,

(25) ‘F(l + )1 =B +n)t=F-r

r1-8Tr1+pu+a+n)

< VTt t+1) Tlg,t—1,1),
where, for convenience,

T(f,t,t+1)

Ita’B’"’“f(t)g(t) _ If’B’"’“f(t)If’B’"’“g(t)‘

_ (TE+WT@-B+mt' 77" T+~ B+t " B
F2-BT2+pu+a+n  TA-B/TA+pu+a+n
a,B.m, TR+ —B4n)t—Fr
X<A O e ATt ataty)
PO+l =B+t P+ s
T1-BT(1+pu+a+n) )
CPRATE =B+t P s,
T2-BT2+u+a+n) I
PA+pPA =B+t " s
FrQ-r(l+p+a+mn) [+ D)
_ <F(2+M)F(2ﬂ+n)t”’“ F(1+u)F(1ﬂ+n)tﬁ“> Jrae
L(2-A)T(24p+a+n) (1 - B (1+p+atn) )

L2+ pl(2 =B+t
+(F@ﬂW@+u+a+n))
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L [FR+pr2— B+ Mttt A= T+ p)T(1 - B +n)t=P*
F2-prE+up+a+n) D1 =Bl +p+a+n)
L1+ )1 =B+t P+
rQA—-pgTrd+p+a+mn)
y B+ B —B+nt2f+ TR+ ul(@2—p+nttB-r
F@-Br@+u+a+n) F2-pre+up+a+n)

and
T(g,t—1,¢)
_ F(2 + :LL)F(2 - ﬂ + n)tliﬁiu a,B,m, 1
- < Te-ATC+atatn g(t))
x ([“vﬂ,na“f(t)_ PR+ P2+t P+ T+ p)l(1 -+ n)t‘ﬂ‘”)
t r2-pgre2+p+a+n TA-BTl+up+a+n)
F(l + M)F(l - ﬂ + n)tiﬁiﬂ a,B,m,1 B
TA- AT+ prary & =Dl
B <F(2+M)F(2—ﬁ +)tt P T+ )1 =6+ n)t‘ﬂ‘”) B
r2-0r2+up+a+mn) Fr1-38Trl+p+a+n)
F(l + M)F(l - ﬂ + n)tiﬁiﬂ a,B,mn,1
TR s )
F(2 + M)F(2 - ﬂ + n)tliﬁiu a,B,n,1
TG atatm W
(F(2 P2 =B+t P PO+l -6+ n)t‘B‘“)
r2-pgre2+u+a+mn) r1-grl+upu+a+mn)
<F(2 + )2 -8+ n)tlﬁ#> T+ (1= B+t Pw
re-0r2+u+a+n) Fr1-/r(l4+u+a+mn)

<r<3 LN CR ) i NCR DI C R A n)tl‘ﬂ‘“)

r-/r@B+pu+a+n) re-pr2+up+a+n)

We conclude this paper by emphasizing, again, that our main result here,
being of a very general nature, can be specialized to yield numerous interesting
fractional integral inequalities including some known results.
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