DOI QR코드

DOI QR Code

FRACTIONAL CALCULUS AND INTEGRAL TRANSFORMS OF INCOMPLETE τ-HYPERGEOMETRIC FUNCTION

  • Received : 2017.02.08
  • Accepted : 2017.03.16
  • Published : 2018.01.31

Abstract

In the present article, authors obtained certain fractional derivative and integral formulas involving incomplete ${\tau}$-hypergeometric function introduced by Parmar and Saxena [14]. Some interesting special cases and consequences of our main results are also considered.

Keywords

References

  1. P. Agarwal, M. Chand, and E. T. Karimov, Certain image formulas of genearlized hypergeometric functions, Appl. Math. Comput. 266 (2015), 763-772.
  2. P. Agarwal and J. Choi, Fractional calculus operators and their image formulas, J. Korean Math. Soc. 53 (2016), no. 5, 1183-1210. https://doi.org/10.4134/JKMS.j150458
  3. P. Agarwal, J. Choi, K. B. Kachhia, J. C. Prajapati, and H. Zhou, Some Integral Trans-forms and Fractional Integral Formulas for the Extended Hypergeometric Functions, Commun. Korean Math. Soc. 31 (2016), no. 3, 591-601. https://doi.org/10.4134/CKMS.c150213
  4. A. Carpinteri and F. Mainardi, Fractals and Fractional Calculus in Physics, Springer, Vienna, 1997.
  5. J. Choi, K. B. Kachhia, J. C. Prajapati, and S. D. Purohit, Some integral transforms involving extended generalized Gauss hypergeometric functions, Commun. Korean Math. Soc. 31 (2016), no. 4, 779-790. https://doi.org/10.4134/CKMS.c150242
  6. L. Galue, A. Al-Zamel, and S. L. Kalla, Further results on generalized hypergeometric functions, Appl. Math. Comput. 136 (2003), no. 1, 17-25. https://doi.org/10.1016/S0096-3003(02)00014-0
  7. R. Hilfer, Applications of Fractional Calculus in Physics, World scientific, Singapore, 2000.
  8. I. S. Jesus and J. A. T Machado, Fractional control of heat diffusion systems, Nonlinear Dynam. 54 (2008), no. 3, 263-282. https://doi.org/10.1007/s11071-007-9322-2
  9. K. B. Kachhia and J. C. Prajapati, Solution of fractional partial differential equation aries in study of heat transfer through diathermanous material, J. Interdisciplinary Math. 18 (2015), no. 1-2, 125-132. https://doi.org/10.1080/09720502.2014.996017
  10. K. B. Kachhia and J. C. Prajapati, On generalized fractional kinetic equations involving generalized Lommel-Wright functions, Alexandria Engineering J. 55 (2016), 2953-2957. https://doi.org/10.1016/j.aej.2016.04.038
  11. V. Kiryakova, Generalized Fractional Calculus and Applications, Wiley and Sons Inc., New York, 1994.
  12. V. Kiryakova, On two Saigo's fractional integral operators in the class of univalent functions, Fract. Cal. Appl. Anal. 9 (2006), no. 2, 161-176.
  13. A. M. Mathai, R. K. Saxena, and H. J. Haubold, The H-Functions: Theory and Appli-cations, Springer, New York, 2010.
  14. R. K. Parmar and R. K. Saxena, The incomplete generalized $\tau$-hypergeometric and second -Appell functions, J. Korean Math. Soc. 53 (2016), no. 2, 363-379. https://doi.org/10.4134/JKMS.2016.53.2.363
  15. I. J. Podulbuny, Fractional Differential Equations, Academic Press, New York, 1999.
  16. T. Pohlen, The Hadamard Product and Universal Power Series, Dissertation, Univer-sitat Trier, 2009.
  17. J. C. Prajapati and K. B. Kachhia, Fractional modeling of temperature distribution and heat flux in the semi infinite solid, J. Fract. Cal. Appl. 5 (2014), no. 2, 38-43.
  18. J. C. Prajapati, K. B. Kachhia, and S. P. Kosta, Fractional Calculus Approach to Study Temperature Distribution Within a Spinning Satellite, Alexandria Engineering J. 55 (2016), 2345-2350. https://doi.org/10.1016/j.aej.2016.05.004
  19. E. D. Rainville, Special Functions, Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx-New York, 1971.
  20. M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. College of General Edu. Kyushu University 1 (1978), 135-143.
  21. I. N. Sneddon, The Use of Integral Transform, Tata McGraw-Hill, New Delhi, India, 1979.
  22. H. M. Srivastava and R. P. Agarwal, Certain Fractional Integral Operators and the Generalized Incomplete Hypergeometric Functions, Int. Appl. Math. 8 (2013), no. 2, 333-345.
  23. H. M. Srivastava, M. A. Chaudhary, and R. P. Agarwal, The incomplete Pochham-mer symbols and their applications to hypergeometric and relative functions, Integral Transforms Spec. Funct. 23 (2012), no. 9, 659-683. https://doi.org/10.1080/10652469.2011.623350
  24. H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science, Amsterdam, The Netherlands, 2012.
  25. N. Virchenko, S. L. Kalla, and A. Al-Zamel, Some results on a generalized hypergeomet-ric function, Integral Transforms Spec. Funct. 12 (2001), no. 1, 89-100. https://doi.org/10.1080/10652460108819336