DOI QR코드

DOI QR Code

THE PROPERTIES OF JORDAN DERIVATIONS OF SEMIPRIME RINGS AND BANACH ALGEBRAS, I

  • Kim, Byung Do (Department of Mathematics Gangneung-Wonju National University)
  • Received : 2016.07.27
  • Accepted : 2017.08.09
  • Published : 2018.01.31

Abstract

Let R be a 5!-torsion free semiprime ring, and let $D:R{\rightarrow}R$ be a Jordan derivation on a semiprime ring R. Then $[D(x),x]D(x)^2=0$ if and only if $D(x)^2[D(x), x]=0$ for every $x{\in}R$. In particular, let A be a Banach algebra with rad(A) and if D is a continuous linear Jordan derivation on A, then we show that $[D(x),x]D(x)2{\in}rad(A)$ if and only if $D(x)^2[D(x),x]{\in}rad(A)$ for all $x{\in}A$ where rad(A) is the Jacobson radical of A.

Keywords

References

  1. F. F. Bonsall and J. Duncan, Complete Normed Algebras, Berlin-Heidelberg-New York, 1973.
  2. M. Bresar, Derivations of noncommutative Banach algebras II, Arch. Math. 63 (1994), no. 1, 56-59. https://doi.org/10.1007/BF01196299
  3. M. Bresar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1003-1006. https://doi.org/10.1090/S0002-9939-1988-0929422-1
  4. L. O. Chung and J. Luh, Semiprime rings with nilpotent derivatives, Canad. Math. Bull. 24 (1981), no. 4, 415-421. https://doi.org/10.4153/CMB-1981-064-9
  5. B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067-1073. https://doi.org/10.2307/2373290
  6. B. D. Kim, On the derivations of semiprime rings and noncommutative Banach alge-bras, Acta Math. Sin. (Engl. Ser.) 16 (2000), no. 1, 21-28. https://doi.org/10.1007/s101149900020
  7. B. D. Kim, Derivations of semiprime rings and noncommutative Banach algebras, Com-mun. Korean Math. Soc. 17 (2002), no. 4, 607-618. https://doi.org/10.4134/CKMS.2002.17.4.607
  8. B. D. Kim, Jordan derivations of semiprime rings and noncommutative Banach algebras. I, J. Korea Soc. Math. Educ. Ser. B. Pure Appl. Math. 15(2008), no. 2, 179-201.
  9. B. D. Kim, Jordan derivations of semiprime rings and noncommutative Banach algebras. II, J. Korea Soc. Math. Educ. Ser. B. Pure Appl. Math. 15 (2008), no. 3, 259-296.
  10. B. D. Kim, Jordan derivations on prime rings and their applications in Banach algebras. I, Commun. Korean Math. Soc. 28 (2013), no. 3, 535-558. https://doi.org/10.4134/CKMS.2013.28.3.535
  11. B. D. Kim, The results concerning Jordan derivations of semiprime rings and Banach algebras, J. Chungcheong Math. Soc., to appear.
  12. K. H. Park and B. D. Kim, On continuous linear Jordan derivations of Banach algebras, J. Korea Soc. Math. Educ. Ser. B. Pure Appl. Math. 16 (2009), no. 2, 227-241.
  13. A. M. Sinclair, Jordan homomorphisms and derivations on semisimple Banach algebras, Proc. Amer. Math. Soc. 24 (1970), 209-214.
  14. I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260-264. https://doi.org/10.1007/BF01362370
  15. M. P. Thomas, The image of a derivation is contained in the radical, Ann. of Math. 128 (1988), no. 3, 435-460. https://doi.org/10.2307/1971432
  16. J. Vukman, A result concerning derivations in noncommutative Banach algebras, Glas. Mat. Ser. III 26(46) (1991), no. 1-2, 83-88.
  17. J. Vukman, On derivations in prime rings and Banach algebras, Proc. Amer. Math. Soc. 116 (1992), no. 4, 877-884. https://doi.org/10.1090/S0002-9939-1992-1072093-8