DOI QR코드

DOI QR Code

ANALYTICAL AND APPROXIMATE SOLUTIONS FOR GENERALIZED FRACTIONAL QUADRATIC INTEGRAL EQUATION

  • Abood, Basim N. (Department of Mathematics, College of Education of Pure Science University of Wasit) ;
  • Redhwan, Saleh S. (Babasaheb Ambedkar Marathwada University) ;
  • Abdo, Mohammed S. (Department of Mathematics, Hodeidah University)
  • Received : 2020.10.13
  • Accepted : 2021.02.07
  • Published : 2021.09.15

Abstract

In this paper, we study the analytical and approximate solutions for a fractional quadratic integral equation involving Katugampola fractional integral operator. The existence and uniqueness results obtained in the given arrangement are not only new but also yield some new particular results corresponding to special values of the parameters 𝜌 and ϑ. The main results are obtained by using Banach fixed point theorem, Picard Method, and Adomian decomposition method. An illustrative example is given to justify the main results.

Keywords

References

  1. G. Adomian, Stochastic system. Academic press, New York, 1983.
  2. G. Adomian, Nonlinear Stochastis system theory and applications to Physics Kluwer Academic Publishers, 1989.
  3. G. Adomian, Solving frontier problems of physics: the decomposition method. Kluwer, Dordrecht, 1995.
  4. J. Banas, M. Lecko and W.G. El-Sayed, Existence theorems for some quadratic integral equations, J. Math. Anal. Appl., 222(1) (1998), 276-285. https://doi.org/10.1006/jmaa.1998.5941
  5. N. Bellomo and D. Sarafyan, On Adomian's decomposition method and some comparisons with Picard's iterative scheme, J. Math. Anal. Appl., 123(2) (1987), 389-400. https://doi.org/10.1016/0022-247x(87)90318-0
  6. T.A. Burton and C. KirkU, A fixed point theorem of Krasnoselskii Schaefer type, Math. Nachrichten, 189 (1998), 23-31. https://doi.org/10.1002/mana.19981890103
  7. U. Cakan, On monotonic solutions of some nonlinear fractional integral equations, Nonlinear Funct. Anal. Appl., 22(2) (2017), 259-273.
  8. Y. Cherruault, Convergence of Adomian's method, Math. Comput. Model., 14 (1990), 83-86. https://doi.org/10.1016/0895-7177(90)90152-D
  9. Y. Cherruault, G. domain, K. Abbaoui and R. Rach, Further remarks on convergence of decomposition method, Inter. J. Bio-Medical Comput., 38(1) (1995), 89-93. https://doi.org/10.1016/0020-7101(94)01042-Y
  10. R.F. Curtain and A.J. Pritchard, Functional analysis in modern applied mathematics, Academic press, 1977.
  11. C. Corduneanu, Principles of differential and integral equations, Allyn and Bacon Inc., New York, 1971.
  12. B.C. Dhage, Existence and approximation of solutions for generalized quadratic fractional integral equations, Nonlinear Funct. Anal. Appl., 22(1) (2017), 171-195. https://doi.org/10.22771/NFAA.2017.22.01.12
  13. A.M.A. El-Sayed, M.M. Saleh and E.A.A. Ziada, Numerical and analytic solution for nonlinear quadratic integral equations, Math. Sci. Res. J. 12(8) (2008), 183-191.
  14. A. El-Sayed and H.H.G. Hashem, Integrable and continuous solutions of a nonlinear quadratic integral equation, Elect. J. Qualitative Theory Diff. Eqs., 2008.25 (2008), 1-10.
  15. A.M.A. El-Sayed and H.H.G. Hashem. Monotonic positive solution of nonlinear quadratic Hammerstein and Urysohn functional integral equations, Commentationes Math., 48(2) (2008), 199-207.
  16. A.M.A. El-Sayed, H.H.G. Hashem and E.A.A. Ziada, Picard and Adomian methods for quadratic integral equation, Comput. Appl. Math., 29(3) (2010), 447-463.
  17. A.M.A. El-Sayed, H.H.G. Hashem and A.A. Ziada, Picard and Adomian decomposition methods for a quadratic integral equation of fractional order, Comput. Appl. Math., 33(1) (2014), 95-109. https://doi.org/10.1007/s40314-013-0045-3
  18. M.A. Golberg, A note on the decomposition method for operator equation, Appl. Math. Comput., 106 (1999), 215-220. https://doi.org/10.1016/S0096-3003(98)10124-8
  19. A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of fractional differential equations, 204. elsevier, 2006.
  20. U.N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218(3) (2011), 860-865. https://doi.org/10.1016/j.amc.2011.03.062
  21. U.N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1-15.
  22. I. Podlubny, Fractional differential equations : Mathematics in Science and Engineering, 198, 1999.
  23. D. Mohamed Abdalla, On quadratic integral equation of fractional orders, J. Math. Anal. Appl., 311(1) (2005), 112-119. https://doi.org/10.1016/j.jmaa.2005.02.012
  24. D. Mohamed and J. Henderson, Existence and asymptotic stability of solutions of a perturbed quadratic fractional integral equation, Fractional Cal. Appl. Anal., 12(1) (2009), 71-86.
  25. K. Maleknejad, K. Nouri and R. Mollapourasl, Existence of solutions for some nonlinear integral equations, Commu. Nonlinear Sci. Numer. Simul., 14(6) (2009), 2559-2564. https://doi.org/10.1016/j.cnsns.2008.10.019
  26. D. Mohamed Abdalla, On monotonic solutions of a singular quadratic integral equation with supremum, Dynam. Syst. Appl., 17 (2008), 539-550.
  27. C. Mieczys law and M.M.A. Metwali, On quadratic integral equations in Orlicz spaces, J. Math. Anal. Appl., 387(1) (2012), 419-432. https://doi.org/10.1016/j.jmaa.2011.09.013
  28. K.S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993.
  29. R. Rach, On the Adomian (decomposition) method and comparisons with Picard's method, J. Math. Anal. Appl., 128(2) (1987), 480-483. https://doi.org/10.1016/0022-247x(87)90199-5
  30. S.S. Redhwan, S.L. Shaikh and M.S. Abdo, Implicit fractional differential equation with anti-periodic boundary condition involving Caputo-Katugampola type, AIMS: Mathematics, 5(4) (2020), 3714-3730. https://doi.org/10.3934/math.2020240
  31. S.S. Redhwan, S.L. Shaikh and M.S. Abdo, Some properties of Sadik transform and its applications of fractional-order dynamical systems in control theory, Advan. the Theory of Nonlinear Anal. its Appl., 4(1) (2019), 51-66.
  32. S.S. Redhwan, S.L. Shaikh and M.S. Abdo, On a study of some new results in fractional calculus through Sadik transform, Our Heritage, 68(12) (2020).
  33. S.S. Redhwan and S.L. Shaikh, Analysis of implicit type of a generalized fractional differential equations with nonlinear integral boundary conditions, J. Math. Anal. Model., 1(1) (2020), 64-76. https://doi.org/10.48185/jmam.v1i1.14
  34. S.S. Redhwan, S.L. Shaikh, M.S. Abdo and S.Y. Al-Mayyahi, Sadik transform and some result in fractional calculus, Malaya J. Matematik, 8(2) (2020), 536-543. https://doi.org/10.26637/mjm0802/0037
  35. S.S. Redhwan, M.S. Abdo, K. Shah, T. Abdeljawad, S. Dawood, H.A. Abdo and S.L. Shaikh, Mathematical modeling for the outbreak of the coronavirus (COVID-19) under fractional nonlocal operator, Results in Physics, 19 (2020), 103610. https://doi.org/10.1016/j.rinp.2020.103610