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GENERALIZED FRACTIONAL DIFFERINTEGRAL

OPERATORS OF THE K-SERIES

Rajeev Kumar Gupta, Bhupender Singh Shaktawat and
Dinesh Kumar∗

Abstract. In the present paper, we further study the generalized
fractional differintegral (integral and differential) operators involv-
ing Appell’s function F3 introduced by Saigo-Maeda [9], and are
applied to the K-Series defined by Gehlot and Ram [3]. On ac-
count of the general nature of our main results, a large number of
results obtained earlier by several authors such as Ram et al. [7],
Saxena et al. [14], Saxena and Saigo [15] and many more follow as
special cases.

1. Introduction and Preliminaries

The K-Series is defined and represented by Gehlot and Ram [3] as
follows:

pK
(β,η)m
q [z] = pK

(β,η)m
q (a1, · · · , ap; b1, · · · , bq; (β, η)m ; z)

=

∞∑
n=0

∏p
j=1 (aj)n zn∏q

r=1 (br)n
∏m
i=1 Γ (ηin+ βi)

,(1.1)

where aj , br, βi ∈ C; ηi ∈ R, (j = 1, · · · , p; r = 1, · · · , q; i = 1, · · · ,m) .
The series (1.1) is valid for none of the parameter br (r = 1, · · · , q)

being negative integer or zero. If any parameter aj (j = 1, · · · , p) in
(1.1) is zero or negative, then the series terminates into a polynomial in
z; and
(i) if p < q +

∑m
i=1 ηi, then the power series on the right side of (1.1) is

absolutely convergent for all z ∈ C,
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(ii) if p = q+
∑m

i=1 ηi and |z| = 1, then the series is absolutely convergent
for all |z| <

∏m
i=1 (|ηi|)ηi , |z| =

∏m
i=1 (|ηi|)ηi and

<
(∑q

r=1 br +
∑m

i=1 βi −
∑p

j=1 aj

)
> 2+q+m−p

2 .

Let α, α′, β, β′, γ ∈ C, < (γ) > 0 and x > 0. Then the generalized
(Saigo-Maeda) fractional integral operators involving Appell function F3

[9, p. 393, Eqs. (4.12) and (4.13)] are defined as follows:

(
Iα,α

′,β,β′,γ
0+ f

)
(x)

=
x−α

Γ (γ)

∫ x

0
t−α

′
(x− t)γ−1 F3

(
α, α′, β, β′; γ; 1− t

x
, 1− x

t

)
f(t) dt

(1.2)

and

(
Iα,α

′,β,β′,γ
− f

)
(x)

=
x−α

′

Γ (γ)

∫ ∞
x

t−α (t− x)γ−1 F3

(
α, α′, β, β′; γ; 1− x

t
, 1− t

x

)
f(t) dt.

(1.3)

Also, the corresponding Saigo-Maeda fractional differential operators [9]
are given as follows:

(
Dα,α′,β,β′,γ

0+ f
)

(x) =
(
I−α

′,−α,−β′,−β,−γ
0+ f

)
(x) (< (γ) > 0)

=

(
d

dx

)k (
I−α

′,−α,−β′+k,−β,−γ+k
0+ f

)
(x) (< (γ) > 0; k = [< (γ)] + 1)

=
1

Γ (k − γ)

(
d

dx

)k
(x)α

′
∫ x

0
(x− t)k−γ−1 tα

× F3

(
−α′,−α, k − β′,−β, k − γ; 1− t

x
, 1− x

t

)
f(t) dt

(1.4)
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and(
Dα,α′,β,β′,γ
− f

)
(x) =

(
I−α

′,−α,−β′,−β,−γ
− f

)
(x) (< (γ) > 0)

=

(
− d

dx

)k (
I−α

′,−α,−β′,−β+k,−γ+k
− f

)
(x) (< (γ) > 0; k = [< (γ)] + 1)

=
1

Γ (k − γ)

(
− d

dx

)k
(x)α

∫ ∞
x

(t− x)k−γ−1 tα
′

× F3

(
−α′,−α,−β′, k − β, k − γ; 1− x

t
, 1− t

x

)
f(t) dt.

(1.5)

Here F3 (α, α′, β, β′; γ; z, ξ) is the familiar Appell hypergeometric func-
tion of two variables defined by

F3

(
α, α′, β, β′; γ; z, ξ

)
=
∞∑
m=0

∞∑
n=0

(α)m (α′)n (β)m (β′)n
(γ)m+n

zm

m!

ξn

n!

(|z| < 1 and |ξ| < 1) ,(1.6)

where (λ)n denotes the Pochhammer symbol defined by

(λ)n =
Γ (λ+ n)

γ (λ)

{
λ (λ+ 1) . . . (λ+ n− 1) (n ∈ N)
1 (n = 0),

it being understood conventionally that (0)0=1 and assumed tacitly that
the Γ-quotient exists (see, for details, [16, p. 21]); definitions and prop-
erties of the Appell functions are available in the book [2].

The left-hand sided and right-hand sided generalized fractional in-
tegration of the type (1.2) and (1.3) for a power function formulas are
given by Saigo-Maeda [9, p. 394, Eqs. (4.18) and (4.19)], as follows:

Iα,α
′,β,β′,γ

0+ xρ−1

= Γ

[
ρ, ρ+ γ − α− α′ − β, ρ+ β′ − α′

ρ+ γ − α− α′, ρ+ γ − α′ − β, ρ+ β′

]
xρ−α−α

′+γ−1,(1.7)

where < (γ) > 0, < (ρ) > max [0,< (α+ α′ + β − γ) , < (α′ − β′)] , (x > 0);
and

Iα,α
′,β,β′,γ

− xρ−1

= Γ

[
1 + α+ α′ − γ − ρ, 1 + α+ β′ − γ − ρ, 1− β − ρ

1− ρ, 1 + α+ α′ + β′ − γ − ρ, 1 + α− β − ρ

]
xρ−α−α

′+γ−1,

(1.8)

where < (γ) > 0, x > 0, < (ρ) < 1+min [< (−β) ,< (α+ α′ − γ) ,< (α+ β′ − γ)].
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The symbol occurring in (1.7) and (1.8) is given by

Γ

[
a, b, c
d, e, f

]
=

Γ(a) Γ(b) Γ(c)

Γ(d) Γ(e) Γ(f)
.

2. Generalized Fractional Integration formulas of the K-
Series

In this section we will establish the left-sided and right-sided Saigo-
Maeda fractional integration formulas for the K-series.

Theorem 2.1. Let α, α′, δ, δ′, γ ∈ C, a ∈ R, x > 0, β1 ∈ C, η1 ∈ R,
and the convergent conditions (i) and (ii) of K-series into the account
of (1.1) be also satisfied. Then the following formula holds true:(
Iα,α

′,δ,δ′,γ
0+

[
tβ1−1 pK

(β,η)m
q (atη1)

])
(x)

= xβ1−α−α
′+γ−1

∞∑
n=0

∏p
j=1(aj)n (axη1)n∏q

r=1(br)n
∏m
i=2 Γ (ηin+ βi)

× Γ (η1n+ β1 − α− α′ − δ + γ) Γ (η1n+ β1 − α′ + δ′)

Γ (η1n+ β1 − α− α′ + γ) Γ (η1n+ β1 − α′ − δ + γ) Γ (η1n+ β1 + δ′)
.

(2.1)

Proof. By using (1.1), we have(
Iα,α

′,δ,δ′,γ
0+

[
tβ1−1 pK

(β,η)m
q (atη1)

])
(x)

=

(
Iα,α

′,δ,δ′,γ
0+

[
tβ1−1

∞∑
n=0

∏p
j=1(aj)n (atη1)n∏q

r=1(br)n
∏m
i=1 Γ (ηin+ βi)

])
(x),

whose right-side, on interchanging the order of the integration and sum-
mation, becomes

∞∑
n=0

∏p
j=1(aj)n (a)n∏q

r=1(br)n
∏m
i=1 Γ (ηin+ βi)

(
Iα,α

′,δ,δ′,γ
0+ t(η1n+β1)−1

)
(x).

Using (1.7) and rearranging the terms, we get

= xβ1−α−α
′+γ−1

∞∑
n=0

∏p
j=1(aj)n (axη1)n∏q

r=1(br)n
∏m
i=2 Γ (ηin+ βi)

× Γ (η1n+ β1 − α− α′ − δ + γ) Γ (η1n+ β1 − α′ + δ′)

Γ (η1n+ β1 − α− α′ + γ) Γ (η1n+ β1 − α′ − δ + γ) Γ (η1n+ β1 + δ′)
.

This competes the proof.
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If we take α = α + δ, α′ = δ′ = 0, δ = −µ and γ = α in (2.1), we get
a known result obtained by Ram et al. [7, p. 408, Eq. (3.1)], as in the
following corollary.

Corollary 2.2. Let α, δ, µ ∈ C, <(α) > 0, a ∈ R, β1 ∈ C, η1 ∈ R,
x > 0, and the convergent conditions (i) and (ii) of K-series into the
account of (1.1) be also satisfied. Then we obtain following result:(

Iα,δ,µ0+

[
tβ1−1 pK

(β,η)m
q (atη1)

])
(x)

= xβ1−δ−1
∞∑
n=0

∏p
j=1(aj)n (axη1)n∏q

r=1(br)n
∏m
i=2 Γ (ηin+ βi)

Γ (η1n+ β1 − δ + µ)

Γ (η1n+ β1 − δ) Γ (η1n+ β1 + α+ µ)
.(2.2)

Remark 2.3. If we take p = q = 1, a1 = ρ, b1 = 1 and δ = −α in the
above equation (2.2), we get the result for the Mittag-Leffler function
Eρ [(β, η)m; z] given by Saxena et al. [14, Eq. (2.1)]. Further, if we set
m = 1 then (2.2) reduces to the result for the function Eρη,β [z] given by

Saxena and Saigo [15, Eq. (14)].

Theorem 2.4. Let α, α′, δ, δ′, γ ∈ C, a ∈ R, β1 ∈ C, η1 ∈ R, x > 0,
and the convergent conditions (i) and (ii) of K-series into the account
of (1.1) be also satisfied. Then the following formula holds true:(
Iα,α

′,δ,δ′,γ
−

[
t−γ−β1 pK

(β,η)m
q

(
at−η1

)])
(x)

= x−β1−α−α
′
∞∑
n=0

∏p
j=1(aj)n (ax−η1)

n∏q
r=1(br)n

∏m
i=1 Γ (ηin+ βi)

× Γ (η1n+ β1 + α+ α′) Γ (η1n+ β1 + α+ δ′) Γ (η1n+ β1 − δ + γ)

Γ (η1n+ β1 + γ) Γ (η1n+ β1 + α+ α′ + δ′) Γ (η1n+ β1 + α− δ + γ)
.

(2.3)

Proof. By using (1.1), we arrive at(
Iα,α

′,δ,δ′,γ
−

[
t−γ−β1 pK

(β,η)m
q

(
at−η1

)])
(x)

=

(
Iα,α

′,δ,δ′,γ
−

[
t−γ−β1

∞∑
n=0

∏p
j=1(aj)n (at−η1)

n∏q
r=1(br)n

∏m
i=1 Γ (ηin+ βi)

])
(x),

next, interchanging the order of the integration and summation, we have

=

∞∑
n=0

∏p
j=1(aj)n (a)n∏q

r=1(br)n
∏m
i=1 Γ (ηin+ βi)

(
Iα,α

′,δ,δ′,γ
− t(1−(η1n+β1)−γ)−1

)
(x).



66 Rajeev Kumar Gupta, Bhupender Singh Shaktawat and Dinesh Kumar∗

Using (1.8) and rearranging the terms, we get

= x−β1−α−α
′
∞∑
n=0

∏p
j=1(aj)n (ax−η1)

n∏q
r=1(br)n

∏m
i=1 Γ (ηin+ βi)

× Γ (η1n+ β1 + α+ α′) Γ (η1n+ β1 + α+ δ′) Γ (η1n+ β1 − δ + γ)

Γ (η1n+ β1 + γ) Γ (η1n+ β1 + α+ α′ + δ′) Γ (η1n+ β1 + α− δ + γ)
.

This competes the proof.

If we take α = α+ δ, α′ = δ′ = 0, δ = −µ and γ = α in (2.3), we obtain
a known result given by Ram et al. [7, p. 409, Eq. (4.1)] as follows:

Corollary 2.5. Let α, δ, µ ∈ C, <(α) > 0, a ∈ R, the convergent
conditions (i) and (ii) of K-series into the account of (1.1) be also sat-
isfied, and x > 0. Then we obtain(

Iα,δ,µ−

[
t−α−β1 pK

(β,η)m
q

(
at−η1

)])
(x)

= x−β1−α−δ
∞∑
n=0

∏p
j=1(aj)n (ax−η1)

n∏q
r=1(br)n

∏m
i=1 Γ (ηin+ βi)

Γ (η1n+ β1 + α+ δ) Γ (η1n+ β1 + α+ µ)

Γ (η1n+ β1 + α) Γ (η1n+ β1 + 2α+ δ + µ)
.(2.4)

Remark 2.6. If we take p = q = 1, a1 = ρ, b1 = 1 and δ = −α in
(2.4), then we get the result for the Mittag-Leffler function Eρ [(β, η)m; z]
given by Saxena et al. [14, Eqn. (2.4)]. Further, if we set m = 1 then
(2.4) reduces to the result for the function Eρη,β [z] given by Saxena and

Saigo [15, Eq. (23)].

Remark 2.7. If we set δ = −α in Corollary 1.1 and 2.1 then we
can easily obtain results concerning Riemann-Liouville fractional inte-
gral operators.

3. Generalized Fractional Derivative formulas of the K-Series

In this section we will establish the left- and right-sided Saigo-Maeda
fractional differentiation formulas for the K-series.

Theorem 3.1. Let α, α′, δ, δ′, γ ∈ C, a ∈ R, β1 ∈ C, η1 ∈ R, x > 0,
and the convergent conditions (i) and (ii) of K-series into the account
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of (1.1) are also satisfied. Then the following formula holds true:(
Dα,α′,δ,δ′,γ

0+

[
tβ1−1 pK

(β,η)m
q (atη1)

])
(x)

= xβ1+α+α
′−γ−1

∞∑
n=0

∏p
j=1(aj)n (axη1)n∏q

r=1(br)n
∏m
i=2 Γ (ηin+ βi)

× Γ (η1n+ β1 + α+ α′ + δ′ − γ) Γ (η1n+ β1 + α− δ)
Γ (η1n+ β1 + α+ α′ − γ) Γ (η1n+ β1 + α+ δ′ − γ) Γ (η1n+ β1 − δ)

.

(3.1)

Proof. By using (1.1) and (1.4), we have(
Dα,α′,δ,δ′,γ

0+

[
tβ1−1 pK

(β,η)m
q (atη1)

])
(x)

=

(
Dα,α′,δ,δ′,γ

0+

[
tβ1−1

∞∑
n=0

∏p
j=1(aj)n (atη1)n∏q

r=1(br)n
∏m
i=1 Γ (ηin+ βi)

])
(x),

now, interchanging the order of the differentiation and summation, we
have

=
∞∑
n=0

∏p
j=1(aj)n (a)n∏q

r=1(br)n
∏m
i=1 Γ (ηin+ βi)

(
Dα,α′,δ,δ′,γ

0+ t(η1n+β1)−1
)

(x).

Using the relation (1.4) and taking (1.7) into account, then after rear-
ranging the terms and little simplification, we get the expression as in
the right-hand side of (3.1). This competes the proof.

If we take α = α + δ, α′ = δ′ = 0, δ = −µ and γ = α in (3.1), we get
known result obtained by Ram et al. [7, p. 410, eqn. (5.1)], as given by

Corollary 3.2. Let α, δ, µ ∈ C, <(α) > 0, a ∈ R, β1 ∈ C, η1 ∈ R,
x > 0, and the convergent conditions (i) and (ii) of K-series into the
account of (1.1) be also satisfied. Then we obtain the following formula:(

Dα,δ,µ
0+

[
tβ1−1 pK

(β,η)m
q (atη1)

])
(x)

= xβ1+δ−1
∞∑
n=0

∏p
j=1(aj)n (axη1)n∏q

r=1(br)n
∏m
i=2 Γ (ηin+ βi)

Γ (η1n+ β1 + α+ δ + µ)

Γ (η1n+ β1 + µ) Γ (η1n+ β1 + δ)
.(3.2)

Remark 3.3. If we take p = q = 1, a1 = ρ, b1 = 1 and δ = −α in
the above corollary, then we get the result for the Mittag-Leffler function
Eρ [(β, η)m; z] given by Saxena et al. [14, Eq. (2.6)]. Further, if we set
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m = 1 in (3.2), then it reduces to the result for the function Eρη,β [z]

given by Saxena and Saigo [15, Eq. (29)].

Theorem 3.4. Let α, α′, δ, δ′, γ ∈ C, a ∈ R, x > 0, β1 ∈ C η1 ∈ R,
and the convergent conditions (i) and (ii) of K-series into the account
of (1.1) be also satisfied. Then the following result holds true:(
Dα,α′,δ,δ′,γ
−

[
tγ−β1 pK

(β,η)m
q

(
at−η1

)])
(x)

= x−β1+α+α
′
∞∑
n=0

∏p
j=1(aj)n (ax−η1)

n∏q
r=1(br)n

∏m
i=1 Γ (ηin+ βi)

× Γ (η1n+ β1 − α− α′) Γ (η1n+ β1 − α′ − δ) Γ (η1n+ β1 + δ′ − γ)

Γ (η1n+ β1 − γ) Γ (η1n+ β1 − α− α′ − δ) Γ (η1n+ β1 − α′ + δ′ − γ)
.

(3.3)

Proof. By using (1.1) and (1.5), we have(
Dα,α′,δ,δ′,γ
−

[
tγ−β1 pK

(β,η)m
q

(
at−η1

)])
(x)

=

(
Dα,α′,δ,δ′,γ
−

[
tγ−β1

∞∑
n=0

∏p
j=1(aj)n (at−η1)

n∏q
r=1(br)n

∏m
i=1 Γ (ηin+ βi)

])
(x),

whose right-side, interchanging the order of the differentiation and sum-
mation, becomes

∞∑
n=0

∏p
j=1(aj)n (a)n∏q

r=1(br)n
∏m
i=1 Γ (ηin+ βi)

(
Dα,α′,δ,δ′,γ
− tγ−(η1n+β1)

)
(x),

by using the relation (1.5), and taking into (1.8), we arrive at

= x−β1+α+α
′
∞∑
n=0

∏p
j=1(aj)n (ax−η1)

n∏q
r=1(br)n

∏m
i=1 Γ (ηin+ βi)

× Γ (η1n+ β1 − α− α′) Γ (η1n+ β1 − α′ − δ) Γ (η1n+ β1 + δ′ − γ)

Γ (η1n+ β1 − γ) Γ (η1n+ β1 − α− α′ − δ) Γ (η1n+ β1 − α′ + δ′ − γ)
.

This competes the proof.

If we take α = α+ δ, α′ = δ′ = 0, δ = −µ and γ = α in (3.3), we obtain
known result given by Ram et al. [7, p. 412, Eq. (6.1)], as given by

Corollary 3.5. Let α, δ, µ ∈ C, <(α) > 0, a ∈ R, β1 ∈ C, η1 ∈ R
and the convergent conditions (i) and (ii) of K-series into the account of
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(1.1) be also satisfied, and x > 0. Then we obtain the following formula:(
Dα,δ,µ
−

[
tα−β1 pK

(β,η)m
q

(
at−η1

)])
(x)

= x−β1+α+δ
∞∑
n=0

∏p
j=1(aj)n (ax−η1)

n∏q
r=1(br)n

∏m
i=1 Γ (ηin+ βi)

Γ (η1n+ β1 − α− δ) Γ (η1n+ β1 + µ)

Γ (η1n+ β1 − α− δ + µ) Γ (η1n+ β1 − α)
.(3.4)

Remark 3.6. If we take p = q = 1, a1 = ρ, b1 = 1 and δ = −α
in (3.4), then we get the result given by Saxena et al. [14, Eq. (2.8)].
Further, if we set m = 1 then (3.4) reduces to the known result given
by Saxena and Saigo [15, Eq. (35)].

Remark 3.7. If we set δ = −α in Corollary 3.1 and 4.1 then we can
easily obtain results concerning Riemann-Liouville fractional derivative
operators.

4. Concluding Remarks

In the present paper, we have studied and given new unified frac-
tional calculus (differintegral) formulas associated with the K-Series.
The theorems have been developed in terms of series form with the help
of Saigo-Maeda power function formulas. Certain special cases of our
main results are also pointed out to be related to some earlier works of
many authors.
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