• 제목/요약/키워드: Fekete-Szego inequalities

검색결과 11건 처리시간 0.022초

FEKETE-SZEGÖ INEQUALITIES FOR A NEW GENERAL SUBCLASS OF ANALYTIC FUNCTIONS INVOLVING THE (p, q)-DERIVATIVE OPERATOR

  • Bulut, Serap
    • 대한수학회논문집
    • /
    • 제37권3호
    • /
    • pp.723-734
    • /
    • 2022
  • In this work, we introduce a new subclass of analytic functions of complex order involving the (p, q)-derivative operator defined in the open unit disc. For this class, several Fekete-Szegö type coefficient inequalities are derived. We obtain the results of Srivastava et al. [22] as consequences of the main theorem in this study.

ON THE FEKETE-SZEGO PROBLEM FOR CERTAIN ANALYTIC FUNCTIONS

  • Kwon, Oh-Sang;Cho, Nak-Eun
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제10권4호
    • /
    • pp.265-271
    • /
    • 2003
  • Let $CS_\alpha(\beta)$ denote the class of normalized strongly $\alpha$-close-to-convex functions of order $\beta$, defined in the open unit disk $\cal{U}$ of $\mathbb{C}$${\mid}arg{(1-{\alpha})\frac{f(z)}{g(z)}+{\alpha}\frac{zf'(z)}{g(z)}}{\mid}\;\leq\frac{\pi}{2}{\beta}(\alpha,\beta\geq0)$ such that $g\; \in\;S^{\ask}$, the class of normalized starlike unctions. In this paper, we obtain the sharp Fekete-Szego inequalities for functions belonging to $CS_\alpha(\beta)$.

  • PDF

FEKETE-SZEGÖ INEQUALITY FOR A SUBCLASS OF NON-BAZILEVIĆ FUNCTIONS INVOLVING CHEBYSHEV POLYNOMIAL

  • Al-khafaji, Saba N.;Bulut, Serap;Juma, Abdul Rahman S.
    • 호남수학학술지
    • /
    • 제43권3호
    • /
    • pp.503-511
    • /
    • 2021
  • In this present work, we obtain certain coefficients of the subclass 𝓗λ,𝛄(s, b, n) of non-Bazilević functions and estimate the relevant connection to the famous classical Fekete-Szegö inequality of functions belonging to this class.

FEKETE-SZEGÖ PROBLEM FOR SUBCLASSES OF STARLIKE FUNCTIONS WITH RESPECT TO SYMMETRIC POINTS

  • Shanmugam, T.N.;Ramachandram, C.;Ravichandran, V.
    • 대한수학회보
    • /
    • 제43권3호
    • /
    • pp.589-598
    • /
    • 2006
  • In the present investigation, sharp upper bounds of $|a3-{\mu}a^2_2|$ for functions $f(z)=z+a_2z^2+a_3z^3+...$ belonging to certain subclasses of starlike and convex functions with respect to symmetric points are obtained. Also certain applications of the main results for subclasses of functions defined by convolution with a normalized analytic function are given. In particular, Fekete-Szego inequalities for certain classes of functions defined through fractional derivatives are obtained.

COEFFICIENT INEQUALITIES FOR ANALYTIC FUNCTIONS CONNECTED WITH k-FIBONACCI NUMBERS

  • Serap, Bulut;Janusz, Sokol
    • 호남수학학술지
    • /
    • 제44권4호
    • /
    • pp.521-534
    • /
    • 2022
  • In this paper, we introduce a new class 𝓡kλ(λ ≥ 1, k is any positive real number) of univalent complex functions, which consists of functions f of the form f(z) = z + Σn=2 anzn (|z| < 1) satisfying the subordination condition $$(1-{\lambda}){\frac{f(z)}{z}}+{\lambda}f^{\prime}(z){\prec}{\frac{1+r^2_kz^2}{1-k{\tau}_kz-{\tau}^2_kz^2}},\;{\tau}_k={\frac{k-{\sqrt{k^2+4}}}{2}$$, and investigate the Fekete-Szegö problem for the coefficients of f ∈ 𝓡kλ which are connected with k-Fibonacci numbers $F_{k,n}={\frac{(k-{\tau}_k)^n-{\tau}^n_k}{\sqrt{k^2+4}}}$ (n ∈ ℕ ∪ {0}). We obtain sharp upper bound for the Fekete-Szegö functional |a3-𝜇a22| when 𝜇 ∈ ℝ. We also generalize our result for 𝜇 ∈ ℂ.

A REFINEMENT OF THE THIRD HANKEL DETERMINANT FOR CLOSE-TO-CONVEX FUNCTIONS

  • Laxmipriya Parida;Teodor Bulboaca;Ashok Kumar Sahoo
    • 호남수학학술지
    • /
    • 제46권3호
    • /
    • pp.515-521
    • /
    • 2024
  • In our paper, by using different inequalities regarding the coefficients of the normalized close-to-convex functions in the open unit disk, we found a smaller upper bound of the third Hankel determinant for the class of close-to-convex functions as compared with those obtained by Prajapat et. al. in 2015.

HORADAM POLYNOMIALS FOR A NEW SUBCLASS OF SAKAGUCHI-TYPE BI-UNIVALENT FUNCTIONS DEFINED BY (p, q)-DERIVATIVE OPERATOR

  • Vanithakumari Balasubramaniam;Saravanan Gunasekar;Baskaran Sudharsanan;Sibel Yalcin
    • 대한수학회논문집
    • /
    • 제39권2호
    • /
    • pp.461-470
    • /
    • 2024
  • In this paper, a new subclass, 𝒮𝒞𝜇,p,q𝜎 (r, s; x), of Sakaguchitype analytic bi-univalent functions defined by (p, q)-derivative operator using Horadam polynomials is constructed and investigated. The initial coefficient bounds for |a2| and |a3| are obtained. Fekete-Szegö inequalities for the class are found. Finally, we give some corollaries.

COEFFICIENT INEQUALITIES FOR A UNIFIED CLASS OF BOUNDED TURNING FUNCTIONS ASSOCIATED WITH COSINE HYPERBOLIC FUNCTION

  • Gagandeep Singh;Gurcharanjit Singh;Navyodh Singh;Navjeet singh
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제31권2호
    • /
    • pp.201-216
    • /
    • 2024
  • The aim of this paper is to study a new and unified class 𝓡αCosh of analytic functions associated with cosine hyperbolic function in the open unit disc E = {z ∈ ℂ : |z| < 1}. Some interesting properties of this class such as initial coefficient bounds, Fekete-Szegö inequality, second Hankel determinant, Zalcman inequality and third Hankel determinant have been established. Furthermore, these results have also been studied for two-fold and three-fold symmetric functions.