References
- I. Aldawish, T. Al-Hawary and B.A. Frasin, Subclasses of bi-univalent functions defined by Frasin differential operator, Mathematics 8 (2020).
- P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften Series, vol. 259, Springer, New York, 1983.
- B.A. Frasin, F. Yousef, T. Al-Hawary and I. Aldawish, Application of generalized Bessel functions to classes of analytic functions, Afrika Matematika 32 (2021), 431-439. https://doi.org/10.1007/s13370-020-00835-9
- H. Tang, N. Magesh, V.K. Balaji and C. Abirami, Coefficient inequalities for a comprehensive class of bi-univalent functions related with bounded boundary variation, Journal of Inequalities and Applications 1 (2019), 1-9.
- K.S. Padmanabhan and R. Parvatham, Properties of a class of functions with bounded boundary rotation, Annales Polonici Mathematici 31 (1975), 311-323. https://doi.org/10.4064/ap-31-3-311-323
- H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Applied Mathematics Letters 23 (2010), 1188-1192. https://doi.org/10.1016/j.aml.2010.05.009
- F. Yousef, B.A. Frasin and T. Al-Hawary, Fekete-Szego Inequality for analytic and biunivalent functions subordinate to Chebyshev polynomials, Filomat 32 (2018), 3229-3236. https://doi.org/10.2298/fil1809229y
- F. Yousef, T. Al-Hawary and G. Murugusundaramoorthy, Fekete-Szego Functional problems for some subclasses of bi-univalent functions defined by Frasin differential operator, Afrika Matematika 30 (2019), 495-503. https://doi.org/10.1007/s13370-019-00662-7
- F. Yousef, S. Alroud and M. Illafe, A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind, Boletin de la Sociedad Matematica Mexicana 26 (2020), 329-339. https://doi.org/10.1007/s40590-019-00245-3
- F. Yousef, S. Alroud and M. Illafe, New subclasses of analytic and bi-univalent functions endowed with coefficient estimate problems, Analysis and Mathematical Physics 11 (2021), 1-12. https://doi.org/10.1007/s13324-020-00437-5