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FEKETE-SZEGO INEQUALITIES FOR A NEW GENERAL
SUBCLASS OF ANALYTIC FUNCTIONS INVOLVING
THE (p, q)-DERIVATIVE OPERATOR

SERAP BuLUT

ABSTRACT. In this work, we introduce a new subclass of analytic func-
tions of complex order involving the (p, q)-derivative operator defined in
the open unit disc. For this class, several Fekete-Szego type coefficient
inequalities are derived. We obtain the results of Srivastava et al. [22] as
consequences of the main theorem in this study.

1. Introduction and definitions

Let A denote the class of functions of the form
(1) f2) =2+ apz”
k=2
which are analytic in the unit disk

U={zeC: |z <1}.

Also let S denote the subclass of A consisting of univalent functions in U.
For f € S, Fekete and Szeg6 [11] proved a noticeable result that the estimate

2) o — pad| <8 1+ 2exp (£2),  0<p<l,
4/’1'_37 ,U/ZL

holds. The result is sharp in the sense that for each p there is a function in the
class under consideration for which equality holds.
The coefficient functional

b0 (1) = a1 = = £ (770 - L " 0
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on f € A represents various geometric quantities as well as in the sense that
this behaves well with respect to the rotation, namely

S (e7f (€%2)) = *0, (f) (9 €R).

Thus it is quite natural to ask about inequalities for ¢, corresponding to
subclasses of S. This is called Fekete-Szegd problem. Actually, many authors
have considered this problem for typical classes of univalent functions (see, for
instance [1,3,7-11,14,16-19]).

For two functions f and g, analytic in U, we say that the function f (z) is
subordinate to g () in U, and write

fz)=9() (€1,
if there exists a Schwarz function w (z), analytic in U, with
w(0)=0 and |w(z)]<1l (2€U),
such that
f(z)=g9w(z) (z€U).

In particular, if the function g is univalent in U, the above subordination is
equivalent to

f(0)=g(0) and f(U)Cg(U).

Quantum calculus is ordinary classical calculus without the notion of limits.
It defines g-calculus and h-calculus. Here h ostensibly stands for Planck’s
constant, while ¢ stands for quantum. The area of g-calculus has attracted the
serious attention of researchers. This great interest is due to its application
in various branches of mathematics and physics. The application of g-calculus
was initiated by Jackson [12,13]. He was the first to develop g-integral and ¢-
derivative in a systematic way. Later, geometrical interpretation of g-analysis
has been recognized through studies on quantum groups. It also suggests a
relation between integrable systems and g-analysis. A comprehensive study on
applications of g-calculus in operator theory may be found in [4]. Recently,
there is an extension of g-calculus, denoted by (p, ¢)-calculus which obtained
by substituting ¢ by ¢/p in g-calculus. The (p,q)-integer was considered by
Chakrabarti and Jagannathan [6].

For a function f € A given by (1) and 0 < ¢ < p < 1, the (p, ¢)-derivative
of function f is defined by (see [2,15])

f(pz) = f(q2)

(3) Dy qf (2) = »—0)

From (3), we deduce that

(4) Dp,qf (2 Z

(z#£0).
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where [k], , denotes the (p, g)-integer and is given by

k ok
P —q
5 K  =—.
(5) L
Asp=1and ¢ — 17, [k], , — k. For a function g (2) = 2F, we get

Dy q (Zk) = [kl,, 2L
We denote by P the class of all functions ¢ which are analytic and univalent
in U and for which ¢ (U) is convex with

p(0)=1 and R{p(z)}>0 (z€U).

By making use of the (p, ¢)-derivative of a function f € A and the principle
of subordination, we introduce the following subclass.

Definition 1. A function f € A is said to be in the class
My () (0<A<1L beC\{0}, peP)
if it satisfies the following subordination condition:

1 (2DpqFx (2) B ; ;

where
(6) Fa(z) =AzDpqef (2) + (1= A) f(2).

Remark 1.1. For p = 1, the class M), () reduces to the class My, ()
introduced and studied by Bulut [5].

Remark 1.2. (i) If we set A = 0 in Definition 1, then we have the class
Mg,q,b (90) = ‘S;Z,q (90)

of (p, q)-starlike functions of complex order b which consists of functions satis-

fying
1 <2Dp,qf (2)

1+5 £ () —1>-<<p(z) (z€U).

(ii) If we set A =1 in Definition 1, then we have the class

1 b
Mp,q,b ((P) = Cp,q (Lp)
of (p, ¢)-convex functions of complex order b which consists of functions satis-

fyin
e 1+ 1 (Dp,q (2Dp,qf (2))

7 —1)<¢(z) (z€).
The classes S}, (@) and C}, () was introduced and studied by Yatkmn and
Kadioglu [23].

Remark 1.3. In Remark 1.2, letting b = 1, we get the classes S;,q (p) =8, ()
and C;yq (¢) = Cp,q (@) of (p,q)-starlike functions and (p, g)-convex functions,
respectively. These classes was introduced by Srivastava et al. [22].



726 S. BULUT

Remark 1.4. In Remark 1.2, letting p = 1, we get the classes S}, (¢) = S ()
and Cll’yq (¢) = Cqp (¢) of g-starlike functions of complex order b and g-convex

functions of complex order b, respectively. These classes was introduced by
Seoudy and Aouf [21].

We shall require the following lemmas.

Lemma 1.5 ([20]). Let p € P with p(z) = 1+ c12+ c2® +---. Then for any
complex number v

|co — vef| < 2max {1, |2v — 1|},
and the result is sharp for the functions given by
1+ 22
122

Lemma 1.6 ([19]). Ifp € P with p(z) =14 c1z2 + 22> + -+, then

_1+z
T 1-—2z

p(2) and  p(z)

—4v + 2, v <0,
|02—1/c§|§ 2, 0<v<l,
qv — 2, v>1.
. . . .14 .
When v < 0 or v > 1, equality holds if and only if p(z) is 1= or o2ne of its
rotations. If 0 < v < 1, then equality holds if and only if p(z) is }f; or one
of its rotations. If v =0, then the equality holds if and only if

1 1 \1+z 1 1 \1-2
_(t. 1t -z <n<l1
p(2) (2+2”) 1—z+<2 2") Ty, (0sns)
or one of its rotations. If v = 1, then the equality holds if and only if p(2) is
the reciprocal of one of the functions such that the equality holds in the case
when v = 0.

Although the above upper bound is sharp, in the case when 0 < v <1, it can
be further improved as follows:

1
{czfucf|+1/|cl|2§2 <O<V§2>

and

1
lea —ved| + (1 —v)|er]? <2 (2§u§1>.

2. Fekete-Szego problem for the function class M;"q’b (¥)
Unless otherwise mentioned, we assume throughout this paper that
0<A<1, 0<g<p<1l beC\{0}, peP,
k], , is given by (5) and z € U.
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Theorem 2.1. Let ¢ (2) = 1+ Bz + Boz?+ B323 + -+ with By #0. If f (2)
given by (1) belongs to the function class ./\/lqu( ), then for any complex
number p

lag — pa3| < | B1b|
(Bl 1) (1A B,,0)
(7) x max { 1, %’ N qu% . (18— 1) (1= 2+ B, A)QM

<[2]M - 1) (1 ~A+[2,, A)
The result is sharp.

Proof. If f € ./\/lp .0 (¢), then we have
h(z) < ¢(2),

where
_ M

By the definition of the function Fy given by (6) and by the (p, ¢)-derivative
defined by (4), we obtain

oo

(9)  Fa(z) = \eDyof (2) + (1 — -2+ (1 py )\) a2,
k=2

Therefore from (8) and (9), we have

(10) hy = % ([2]m - 1) (1 A+ 12, A) as,

(1) ho=y {([3]1,#—1) (124 B],02) as— (121, -1) (1-3+12,., A)Qag]
Since ¢ (z) is univalent and h (z) < ¢ (z), the function
1+¢ ! (h(2))
]

is analytic and has a positive real part in U. Also we have

Ho=¢ ()

B B 2\ Bac?
(12) =1+ 1201 +{21<c2621)+101}z2+m.

Thus by (8)-(12) we get

=1+cz+cz?+e32® 4

Blclb

2 ([2]M - 1) (1 ~A+[2,, A)

(13) as =

)
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Bib [c 1 <1 By Bib >62]
o— s |1 — 5 — | |-
2 ([3]p7q - 1) (1 A+ [3],, A) 2 Bi 2,1
Taking into account (13) and (14), we obtain
B1b

(14) a3z =

(19) %~ haz = 2 ([3]p7q - 1) (1 —~x+103,, A) (e2 = 01).
where

1| B B ) ([3]M - 1) (1 — A+, )\)
(16) o=35 |13 2],,—1 ([Q]M B 1) (1 oL )\>2#

Our result now follows by an application of Lemma 1.5. The result is sharp for
the functions

1 ZDp’q]:A(Z)_ — 0 (22) an 1 ZDp,q]:A(Z)_ —v(z
1+b( Fi(2) 1) # (=) 4 1+b< Fx(2) 1) e (2.

This completes the proof of Theorem 2.1. O

Corollary 2.2. Taking A =0 and A =1 in Theorem 2.1, we get [23, Theorem
4] and [23, Theorem 5], respectively.

Corollary 2.3. Taking A =0 and A = 1 with b = 1 in Theorem 2.1, we get
[22, Theorem 2.1] and [22, Theorem 2.2], respectively.

Corollary 2.4. Taking A =0 and A = 1 with p = 1 in Theorem 2.1, we get
[21, Theorem 1] and [21, Theorem 2], respectively.

Theorem 2.5. Let ¢ (2) = 1+ B2+ Byz?+Bsz3+- -+ with By > 0 and By > 0.
If f (2) given by (1) belongs to the function class Mquyb (¢) with b > 0, then

|as — pas|

Bsb N B?b? 1 _ I
(B =) (=24 B0 A) (2 1) [ (B 1) (124 B,02) (2, -1) (124 12,,0) ]

if p <o
Bib
S ([3]p,q_1)(1_>‘+[3]p,0)‘)’
ifor <p <o
Byb _ B 1 _ ®
([3]1-".0 - 1) (1 —A+ [3]%0 ’\> ([Q]M - 1) ([3]%'1 - 1) (1 —A+ [3]17-0 /\) ([2]p,q - 1) (1 —A+ mp.q )\)2 ’
'Lf,u Z g2,
where
2
_ B 2 _ —
() (o ae ) [ (8, )5

([3]p’q - 1) (1 ~A+13],, A) B2b
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a1s) B ([2]p7q - 1) (1 -A+[2,, A>2 [B%b + ([2]p7q - 1) (By + Bl)}
o2 = ([3],7,,1 - 1) (1 ~ A+ 13, )\) B2 :

([2}%,1 - 1) (1 A+, )\)2 {B%b + ([2]m - 1) BQ}
(13, = 1) (1= A+ 13],,2) B2

(19) 03 =

If o1 < < o3, then

(121, - 1>2 (1-2+12,,2)

By = 1) (1= A+ B, \) B

N P N (1Bl = 1) (1=2+],,2) ROy
1 2 ([2]1741 - 1) ([2]%(1 B 1) (1 avp,, )\)2 2

_ Bib

N ([3]1,@ - 1) (1 A+ 13, /\> '

Furthermore, if 03 < u < og, then

([2]M - 1)2 (1 ~A+[2,, )\)
8l 1) (1= A+ 13],,2) B3
1

]

X § B1+ Ba + Bib 1-— <[3}p7q _ ) <1 A Bl )\) | ¢ lazl?
([Q]M _ 1) ([Q]M _ 1) (1 A+ 02, A)2

Bib

([3]M - 1) (1 A+ (3], /\> '

Each of these results is sharp.

2

|as —,ua%’ + (

2

Ias—ua3!+(

<

Proof. Applying Lemma 1.6 to (15) and (16), we can get our results. On the
other hand, using (15) for the values of o1 < pu < o3, we have

Bib
2 (18], 1) (1= A+ 13],,,\)

B3 |ey|°

4 ([2]m - 1)2 (1 ~A+[2,, A)

’02 — 60?‘

‘Ubg - Ma§’ + (1 —01) \a2|2 =

Jr(,ufo—l) 2
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Blb{|02 — 53|+ |c1|2}

2 ([3]M - 1) (1 ~ A+, )\)
Bib
([3]p7q - 1) (1 A+ 3], )\) '

Similarly, for the values of o3 < p < o9, we get
Bib

|ag — pa3| + (02 — p) |ag|” = 5 ([3]%(1 - 1) (1 v )\) |ea — ¢t
B2 ey ”
4 ([Q]M - 1)2 (1 A2, /\)
Blb{|02 — 52|+ (1-6) |cl|2}
2 ([3]1,,(1 - 1) (1 ~ A+ 03, )\)
Bib
([3]1,& - 1) (1 A+ (3], )\) '

To show that the bounds asserted by Theorem 2.5 are sharp, we define the
following functions:

<

+(0'2_U) 2

IN

K,, (2) (n=2,3,...),
with
K<Fn (0) =0= K{pn (0) - 13

1 /2D, K, (z) _
1 - P,4-*Pn -1 — n—1
+b< Ko, (2) > S

and the functions F, (z) and G, (z) (0 <n < 1), with
F,(00=0=F;(0)—1 and G,(0)=0=G,(0) -1,

respectively. Then, clearly, the functions K, , Fy, G, € M;\,q,b (p). If p < oy

or p > o2, then the equality in Theorem 2.5 holds if and only if f is K, or
one of its rotations. When o7 < p < o9, then the equality holds if and only if
fis K, or one of its rotations. If y = oy, then the equality holds if and only
if f is F}, or one of its rotations. If ;1 = o9, then the equality holds if and only

if f is G, or one of its rotations. (I

by

by

and
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Taking A = 0 in Theorem 2.5, we get following consequence.

Corollary 2.6. Let o (z) = 1+ Bz + Byz? + B3z + -+ with B; > 0 and
By > 0. If f(2) given by (1) belongs to the function class SY , (o) with b > 0,
then

Bab Bib? { 1 } <
e,,-1 oL, |6, [B,,-1)° f= o
B1b
’(13—,”(13’ < [3]1,7,271’ 01 < p < o9,
__Bb B7b? |: 1 _ I i| >
&l,,1 @,,-1|®,, 1 ®,,-1|°> H=2

where

(121, — 1) [B3o+ (12, - 1) (B2 = BY)]

o ([3]p7q - 1) B2 7

(1, —1) [BRo+ (121, — 1) (B2 + BY)]
7 ([3]p’q - 1) B2 ’
o (121, — 1) [B2o+ (12],, 1) B

(13],.,— 1) B3

2 ([2]17"1 B 1>2
’ag - Ma2| + ([3]%(1 - 1) B2

2 3], —1
Apoop B () Bl ) < — D10
2l —1 2,41 Blpg =1

Furthermore, if 03 < u < o9, then

(12, - 1)

If o1 < pu < o3, then

2
ag — pas| +
| | ([s]p’q—1> B2
B2b B],,—1 9 Bib
XABi4+By+—+— [1- =L ] % ag]? < ———.
{ 1 2l,, 1 ( 2, —1") 1@ =, =

Each of these results is sharp.
Remark 2.7. Letting b =1 in Corollary 2.6, we get [22, Theorem 3.1].
Remark 2.8. Letting p = 1 in Corollary 2.6, we get [21, Theorem 3].

Taking A = 1 in Theorem 2.5, we get following consequence.
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Corollary 2.9. Let ¢ (2) = 1 + Bz + Byz? + B3z + --- with B; > 0 and
By > 0. If f (2) given by (1) belongs to the function class C;q (¢) with b > 0,
then

Bob 4 BIb? 1 _ w
[3]1%(1([3]1)41_1) [2]1‘”’1_1 [3]p1q([3]p~q_1) [2]241([2]17«1_1) ’
u <oy,

B1b

as — Ma’% S [3]p,q([3]p,q71)
o1 < p < oo,
_ ng _ B%b2 1 _ 14
[3]p,q([3]p7q71) [2]1"‘171 [3]p7q([3]p,q71) [Q]Z,q([Q]p‘qfl) ’

12 Z g2,

where

"o 8l,.q (13, — 1) B3 ’

22, (2, - 1) [Bib+ (12, — 1) (Ba+ B)]
"o 8l,.q (13, — 1) B3 ’
N 22, ([2}m - 1) [B%b + ([Q]M - 1) Bg}

If o1 < p < os, then

22, (12, - 1)

8], ([3],., — 1) Bib

B?b 13154 <[3]p,q B 1) 2
' {Bl SR, (1 " (1) M) } ”

Byb
Blq (13,0 —1)

Furthermore, if 03 < u < o9, then

22, (12, - 1)
8)g (131, — 1) B3

ay — a3 +

<

’a?, - ua%! +
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B?b 13154 <[3]p,q B 1) 2

VR e ()
< Bib .
Bl (B0 1)

Each of these results is sharp.

Remark 2.10. Letting b =1 in Corollary 2.9, we get [22, Theorem 3.2].

Remark 2.11. Letting p =1 in Corollary 2.9, we get [21, Theorem 4].
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