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COEFFICIENT INEQUALITIES FOR ANALYTIC FUNCTIONS
CONNECTED WITH k-FIBONACCI NUMBERS

SERAP BULUT* AND JANUSZ SOKOL

Abstract. In this paper, we introduce a new class R’;\ (A >1, k is any
positive real number) of univalent complex functions, which consists of
functions f of the form f(z) = z+ > 0. ,anz™ (2] < 1) satisfying the
subordination condition

f(z)

z

1+ 7222 k—Vk2+4

2,27 Tk = 2 ’

1—A _
( ) 1—krpz —7f

A (2) <

and investigate the Fekete-Szegd problem for the coefficients of f € R’;

which are connected with k-Fibonacci numbers

(k—me)" =7
Vk? 44

We obtain sharp upper bound for the Fekete-Szeg6 functional |a3 - ,ua%

when p € R. We also generalize our result for pu € C.

Fim = (neNU{0}).

1. Introduction

Let R = (—o00,00) be the set of real numbers, C be the set of complex
numbers and
N:={1,2,3,...} =N\ {0}
be the set of positive integers.
Assume that H is the class of analytic functions in the open unit disc

U={z€C:|z| <1}.
Let the class P (3) be defined by
PB)={peH:p(0)=1 and R(p(z)) > B, z€U}.
In particular, we set P (0) = P.

For two functions f,g € H, we say that the function f is subordinate to g
in U, and write

f(z)<g(2)  (2€0),
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if there exists a Schwarz function
weR:={weH: w0)=0 and |w(z)| <1 (z€U)},
such that
fZ)=gw(z) (z€l).

Furthermore, if the function ¢ is univalent in U, then we have the following
equivalence

f(z)=g(z) (z€eU)« f(0)=g(0) and f(U)cCg(U).
Let A denote the subclass of H consisting of functions f normalized by
£(0) = £'(0) =1 =0.

Each function f € A can be expressed as
(1) f(z):z—l—Zanz" (z€U).
n=2

We also denote by S the class of univalent functions in A.

Since univalent functions are one-to-one, they are invertible and the inverse
functions need not be defined on the entire unit disk U. In fact, the Koebe
one-quarter theorem, see [3], ensures that the image of U under every univalent
function f € S contains a disk of radius 1/4. Thus every function f € A has
an inverse f~!, which is defined by

FHfE) =2 (z€D)
and
1 1
FUH ) =w wl <ro(f);r0(f)z7)-

In fact, the inverse function F = f~! is given by

@) )

I Hw) = w—asw?+ (203 —az)w® — (5a3 —5agaz +ay)w* +- - - =: w-l-z Apuw™.
n=2

For a function f € S, the logarithmic coefficients d,, (n € N) are defined by
(oo}
z
(3) log g =2 z_:lénz” (z€l),

and play a central role in the theory of univalent functions. The idea of studying
the logarithmic coefficients helped Kayumov [11] to solve Brennan’s conjecture
for conformal mappings. If f € S, then it is known that

01 <1
and )
102 < 5 (1+2e72) ~0,635...
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(see [3]). The problem of the best upper bounds for |, | of univalent functions
for n > 3 is still open.
For f € S given by (1), Fekete and Szeg6 [8] proved a noticeable result that

3_4:[" ) ,U/SO7
(4) o — pa3| < 1+2exp (£2) , 0<p<1,
4#*3 ) /U'Z]-

holds. The result is sharp in the sense that for each u there is a function in the
class under consideration for which equality holds. The coefficient functional

(1) = as —pai = 5 (£ 0) - % (1" 0)°)

on f € A represents various geometric quantities as well as in the sense that
this behaves well with respect to the rotation, namely

Gu(e7f (e72)) = (f)  (0ER).

By means of the principle of subordination, we introduce the following class
for functions f € S:

Definition 1.1. Let k be any positive real number and A > 1. The function
f € A belongs to the class R% if it satisfies the condition that

(5) (1-A) LS) FAF(2) < pe(2)  (z€U),
where
~ B 1+ 7722 _ 1+ 7722
(6) pr(2) = 1—kmz—1222  1— (17 —1)z— 1222
with
k—Vk2+4
(7) T =—"7—.

2
Yilmaz Ozgiir and Sokét [13] showed that the function pj given by (6)

belongs to the class P (%) .

On the other hand, the subordination (5) may be written as a linear differ-
ential equation

(8) (1=2)

for some w € ). Therefore, the solution of (8)

1) = 357 [ 4R e wie) a

f(z)

z

+Af(2) =pr (w(z))  (2€D),

gives one-to-one correspondence between classes 2 and R’;\
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For k = 1, the class R’f\ reduces to the class R, which consists of functions
f € A defined by (1) satistying

-0 ap @) <.
where ) s Y
ﬁ(z)::ﬁl(z):%, 7;271:1_2 i)

For more details please refer to [4, 5, 6, 9, 10, 14, 15, 16, 17, 18].
For A = 1, the class R} reduces to the class R (py) which consists of func-
tions f € A satisfying
' (2) < pr (2) (zeU),
where py, is given by (6) . In particular, we get the class Rl = R (p) . The classes
R (pr) and R (p) are introduced by Sumalatha et al. [19].

Definition 1.2. [7] For any positive real number k, the k-Fibonacci se-
quence {Fy .} is defined recurrently by

Fk,n—i—l = ka,n + Fk,n—l (7’L € N)

with initial conditions

n€Ny

Fro0=0, Fr1=1
Furthermore n'" k-Fibonacci number is given by
k—m)" — 10
(9) N Gk ) ki
Vk?+4
where 7, is given by (7).

For k = 1, we obtain the classic Fibonacci sequence {Fn}nGNo :

FO :07 Fl = 1, and Fn+1 ZFn+Fn_1 (TLGN)

Yilmaz Ozgiir and Sokét [13] showed that the coefficients of the function
Pk (z) defined by (6) are connected with k-Fibonacci numbers. This connection
is pointed out in the following theorem.

Theorem 1.3. [13] Let {Fy ,, }
defined in Definition 1.2. If

- 1+ 7222 . .
(10) Be(2) = e 1S s
n=1

neNo be the sequence of k-Fibonacci numbers

1 —krez— 222
then we have
(11)
Py = kmis Pro= (K +2) 7, Brn=Fon1+ Font))f (n€N).
The main purpose of this paper is to obtain Fekete-Szego inequalities for

functions belonging to the class R’j\ For this purpose, we need the following
lemmas:
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Lemma 1.4. [3] Let p(z) =1+ c12 + co2? +--- € P. Then
len] < 2 (n € N).
Lemma 1.5. [12] If p € P withp(2) =1+ c12 + o2 + -+, then

—4dv+2 |, v<0,
|CQ—VC%|S 2 , 0<v <,
v — 2 v>1.

)

When v < 0 or v > 1, equality holds true if and only if p (2) is %J_ri or one of
its rotations. If 0 < v < 1, then equality holds true if and only if p (z) is %fi;

or one of its rotations. If v = 0, then the equality holds true if and only if

1 1 \1+z (1 1\1-z
— (242 (2oZ2p) =2 <n<
r() <2+2”>1—z+(2 2")1+z O<n=<1)

or one of its rotations. If v = 1, then the equality holds true if and only if p (2)
is the reciprocal of one of the functions such that the equality holds true in the
case when v = 0.

Although the above upper bound is sharp, in the case when 0 < v < 1, it
can be further improved as follows:

2 2 1
e —vei[+vjeafP <2 (0<v<g

and

1
‘cz—uc%‘+(1—u)\cl|2§2 <2<V§1>.

Lemma 1.6. [1] If p(2) =1+ p1z +p2z2 +--- and
1t _k-vT

< =, =
p(2) < pr () 1 — krpz — 1222 T 2

then we have
|p2*ypf|§k7k|max{1, |k2+2”yk2||7—£|} for all v € C.
The above estimates are sharp.

Lemma 1.7. [2] If p(2) =1+ p1z + p2z? + .-+ and

1+ 7',322

o0
_— N = n n
1 kmz—TE22 1+ Z(Fk’"_l + Fleni1)7i 2%,

n=1

(12)  p(2) <px (2)

then we have
(13) Ipn| < (Frn—1 4 Fint1) |7kl (n €N).
The result is sharp.
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2. Main results
In this section, we firstly give the upper bound of the Fekete-Szegt functional
’0,3 - ,ua%’ of functions f € R% given by (1) when p € R.

Theorem 2.1. If the function f given by (1) is in the class R%, then we
have

s — ]
(1422 (K2 +2)—p(1+20)k* < (14+2)2[(K*+2) T+ K]
I+ N2(1+23) koo BT a0Ren
< [ 2)ne] 0N e2) ]
= 142X ) [EESBNIZE Sps [EESINIZE )
1420k —(142)% (k2 +2) 5 S (1+2)?[(K*+2) 7 — k]
EESVEIGE=DY) Tk > H= +20k 7%
A+N)2[ (k% +2) T +k (14+2)? (k242
It (1J[r(2x)k22k l< RS W’ then
2712
) (L+ X7 [(F*+2) 7% + K] o kT
_ — < .
o — pa3| + (“ (1+2)) k27 a2l < T
. (102 (K2 42) (A+0)?[(k*+2) e —k
Furthermore, if ESyE <u< (1£2A)k27k ]7 then
2 2
o [ LN (K +2) 7, — K] 2 _ klnl
_ — < .
Jas — was| + ( (1+2\) k27, i) el < 0y

Each of these results is sharp.

Proof. If f € R’f\, then by the principle of subordination, there exists a
Schwarz function w € Q) such that
z .
(14) -2 @ =nwe) Gew,
where the function py, is given by (10). Therefore, the function

(15) 9(2)1:m=1+012+0222+~-- (z e )
is in the class P. Now, defining the function p(z) by

(16) p(z):(1—)\)@+>\f’(2)=1+p1Z+p2z2+~--,
it follows from (14) and (15) that

(17) p(2) = pr <‘Z’((;);11) .

Note that

c 1 c?
w(z):;z+2(02—21>z2+-~-
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and so

. Pk,1C 1 A\ 1,
(18)  frlw(z) =1+22%s [2 ( - 21) s+ 4051,,%2] 2

Thus, by using (15) in (17), and considering the values pi ; (j = 1,2) given in
(11), we obtain

]ka

kT d k2 +2) ¢
(19) pP1 = 701 and Py = 7 (62 _ 21> + %C%
On the other hand, a simple calculation shows that
ESPAC IR 2
(L=2) ==+ M (z) =1+ (1 +Nasz+ (1420 agz" + -+,

which, in view of (16), yields
(20) p1=(1+A)a and p2 = (1+2)\)as.

Thus, we obtain

9 1 (14+2)) ,
az — pagy = 112\ p2—Mmp1
1 kT, 2 k2 +2) 72 1+ 2)) k272
_ k(62_1>+( )kC%—M( ) ch%
142X\ | 2 2 4 4(14N)

o ka 2

= Sty (2
where

L1 L+ N (R +2) —p(1+20) K
2 2(1+ \)? k-
The assertion of Theorem 2.1 now follows by an application of Lemma 1.5.
To show that the bounds asserted by Theorem 2.1 are sharp, we define the

following functions:

Kpo () (neN\{1}),

with
Kp,, (0) =0=K;_ (0) -1,
by
K-
(21) (1—-X) Kpn (2) +AK, (2) =P (2"71),

and the functions F,, (z) and G, (2) (0 <7 < 1), with
F,(00=0=F(0)—1 and G,(0)=0=G,(0)—-1,
by

0B - (£52)
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and
Gy (2) [ z(z+mn)
1-)\) 122 4G = —_
-2 G g, ) = (<L),
respectively. Then, clearly, the functions Kj, ,, I, Gy, € R’;\ We also write
Ki’k - Ki’k,?'

1+0)2[(k2+2) i +k 1+0)2[(k*+2) r—k o
Ifp< ( ()1-[s-(2>\)k2)rkk ] or u > ( ()1—[i-(2>\)k22'kk ], then the equality in Theo-

rem 2.1 holds if and only if f is Kj, or one of its rotations. When
L+ N [(+2) 7+ k] (L) [(k +2) 7 — K]
(1+ 2)) k27 a (1+ 2)) k27
the equality holds if and only if f is Kj, , or one of its rotations. If p =

(1+2)2[(K*+2) 7+ ]
(2N k2,

, then the equality holds if and only if f is F;, or one of its

2((1.2 _
(WA A2)7 ] then the equality holds if and only if f is

G, or one of its rotations. O

rotations. If p =

If the function f given by (1) is in the class R, then from (19), (20) and
Lemma 1.4, we have

(22) o] < 11
and using the bound for ‘(l3 — ,ua%’ with . = 0 we obtain
2 2
(23) las| < (kl——ti;yk
For the general case, if we consider (16), then we get
4 = —Pn7t
"1+ (n—1)A

Therefore using Lemma 1.7, we get following result.

Theorem 2.2. If the function f given by (1) is in the class R%, then we
have
Fk,n—2 + Fk,n
1+ (n—1)A
Equality holds in (24) for the function

- 1 o z
For(z) = Xz%l £ pr (t) dt,
0

(24) lan| < "™t (n>2).

where the function py, is given by (10).

Now, we give the upper bound of the Fekete-Szegt functional |a3 — ua%‘ of
functions f € R given by (1) when p € C.
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Theorem 2.3. If the function f given by (1) is in the class R%, then we

have
7l
k

Proof. Let the function f € A given by (1) be in the class R%. Define the
function p (2) = 1+ p1z + p2z? + -+ by

a-19 are =p0),

z
where p (2) < P, (2) and py, () is defined by (6) . Considering the equalities in
(20), for any p € C, we have

142\,

K242yt 2N
Har a2

k|t
|a3 fpa§| < 14‘_;')\ max{l,

for all u € C. The result is sharp.

1
1+2X

(1L+2)) ,

‘a?, —,ua§| = (1 +)\)21’1

P2 —p

Now, by Lemma 1.6, this equality implies that

k2+2_ﬂwk2
(1+X)

k Tk
|a3 —ua§| < 1_}_2‘/\ max{l,

7]
e (-
This evidently completes the proof of theorem. O

Theorem 2.4. Let f € R% be given by (1) be univalent and its inverse f~!
has the coefficients of the form (2). Then we have

k|7
A < —/—=
\ 2|_1JrA
and
k|7’k| 9 2(1—|—2/\) 9 |Tk|
As| < 1 9 2T g2 PREL
sl < 55 max LR+ (1+)\)2k k

Proof. Let the function f € RY and of the form (1). Then for the initial
coefficients A, and As of the inverse function f~1 given by (2) we get

(25) A = —as and Az = 2a3 — as.

The upper bound for A, is obtained by using the equalities (19) and (20).
Also the upper bound for Az is easily obtained from Theorem 2.3. O

Theorem 2.5. Let f € R} be given by (1) be univalent and its inverse f =1
has the coefficients of the form (2). Then we have
7l
k

(+20C-

k42— 5
(14X

k|7
|A3 —,uA%| < 1J_;L max{l,

for all u € C.



530 Serap Bulut and Janusz Sokét

Proof. Let the function f € R§ and of the form (1). Then from (25) and
(20) , we get

1 (T+2))(2—p)
As — nA2] = St VA0 S 257
I L e Ty N TPV
Now using Lemma 1.6, we obtain the required result. O

Theorem 2.6. Let f € R% be given by (1) be univalent and the coefficients
of log (f(z)/%) be given by (3). Then

101] < 5

L|T|
1+ "

and
142X 2

k42— 5
2(1+\)

= 2(1+2A

FEach of these results is sharp.

k
|02] < |Tk|)max{1,

Il
2

Proof. Let the function f € RS and of the form (1). By differentiating (3)
and equating coeflicients, we have

1 1 1
51 = 5(12, (52 = 5 <a3 — 2@%) .

Thus the desired results obtained from (19) and (20) for |41 |, and from Theorem
2.3 for |52| . O

The following result is obtained from Theorem 2.3 (or Lemma 1.6).

Theorem 2.7. Let f € R% be given by (1) be univalent and the coefficients
of log (f(%)/z) be given by (3). Then
Il
(-

k 142X (1
et (420 (L)
)
Setting A = 1 in Theorem 2.1, we get the following consequence.

K +2— 5
2(1+ )

|52 - H(S%

< 50
2(1+ 27

3. Corollaries and Consequences

Corollary 3.1. If the function f given by (1) is in the class R (py), then
we have

4(k2+2)—3pk2 9 4[(k2+2)7—k+k]

12 Tk, I HS 3k27'k, 9
2 ) 4[ (k2 +2) i +k 4 (k?+2) 1, —k
ag—,ua2| < klgkl 7 [( 3192)7: ] <u< [( 3k23:k ]’
3uk®—4(k*+2) o > 4[(k*+2) 7 —K]

12 Te » HZ 3KZ7,
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If%Wgugquf), then

s — gl + (u CA[(*? ;kz)TZk + k}) aal? < @
Furthermore, if 2 ];:;2) <p< Wz—;#w, then

o = (AL ) g < H

FEach of these results is sharp.

Remark 3.2. Note that Corollary 3.1 gives a worthy improvement of [19,
Theorem 3.3] for the real values of p.

Setting £ = 1 in Theorem 2.1, we get the following consequence.

Corollary 3.3. If the function f given by (1) is in the class Ry, then we
have

304N —p(142)) 2 A+N2(37+1)
(T+0)2(1+2X) e R (EE OV

2 7] (1+0)2(37+1) (1+2)%(37—1)

as — pa3| < 4 iy AR SHS TaRpyr
p(1420)=3(1+2)% o (1402 (37-1)
Ty T K2 arnr

I QB o)) o 304N )

(+r2nT I+2x
az — pa3| + <“‘ d 421222(:;: D) a2l < 7 J|:|2/\
Furthermore, if 3(11j2>;\)2 <p< uti‘féi;;l), then
o (SRR < 1

Each of these results is sharp.
Setting £k =1 and A = 1 in Theorem 2.1, we get the following consequence.

Corollary 3.4. If the function f given by (1) is in the class R (p), then we
have

4— 2 4(37+1
4“7_ b /’I’S (37— )7
2 4(3 1 4(317—1
as —pa3| < ¢ , A6 <) < 262D
=4 _2 4(37-1)
T 7T K2 T
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If%gpgzl, then

4(31r+1) 2 |7l
2T < 21
37 )|a2| =73

|as — pa3| + (u -
Furthermore, if 4 < p < 4(3377;1), then

437 -1 T
o ]+ (O )bl <

FEach of these results is sharp.
Setting A = 1 in Theorem 2.3, we get the following consequence.

Corollary 3.5. If the function f given by (1) is in the class R (), then

we have
[7x]
k

Setting A = 1 in Theorem 2.4, we get the following consequence.

k 3
|a3 —ua§| < |3Tk| max{l, K +2— Zukz

for all x € C. The result is sharp.

Corollary 3.6. Let f € R (pr) be given by (1) be univalent and its inverse
f~! has the coefficients of the form (2). Then we have

k
As] < 3 I

k 4—k?
A3|§;—kmax{1, } ‘ |7'k|}

and

2k

Setting A = 1 in Theorem 2.5, we get the following consequence.

Corollary 3.7. Let f € R (px) be given by (1) be univalent and its inverse
f~! has the coefficients of the form (2). Then we have

k 8 — (2 —3u) k2
A5 — p2] < ;’“max{l, wm}

for all u € C.
Setting A = 1 in Theorem 2.6, we get the following consequence.

Corollary 3.8. Let f € R (px) be given by (1) be univalent and the coef-
ficients of log (f(z)/z) be given by (3). Then

k
a1l < 5 I

k 5k% + 16
|52|gﬂmax 1,g|ﬂc\ .
6

and

8k

Each of these results is sharp.
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Setting A = 1 in Theorem 2.7, we get the following consequence.

Corollary 3.9. Let f € R (pr) be given by (1) be univalent and the coef-

ficients of log (f(z)/z) be given by (3). Then

(1]
(2]
(3]

(4]

[5

6

[7]
(8]

[9]

(10]

(11]

(12]

(13]
[14]
(15]

(16]

k|| (5 — 3u) k2 + 16|

’ 8k

|02 — pdi| < 1 |7k ]
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