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A REFINEMENT OF THE THIRD HANKEL DETERMINANT

FOR CLOSE-TO-CONVEX FUNCTIONS

Laxmipriya Parida, Teodor Bulboacă, and Ashok Kumar Sahoo∗

Abstract. In our paper, by using different inequalities regarding the

coefficients of the normalized close-to-convex functions in the open unit
disk, we found a smaller upper bound of the third Hankel determinant for

the class of close-to-convex functions as compared with those obtained by

Prajapat et. al. in 2015.

1. Introduction and Main Definitions

Let denote by H(D) the class of functions which are analytic in the open
unit disk D := {z ∈ C : |z| < 1}, and let A be the subclass of H(D) consisting
of the functions f normalized with f(0) = f ′(0)− 1 = 0, that is

(1) f(z) = z +

∞∑
k=2

ak z
k, z ∈ D.

Let P be the well-known class of Carathéodory functions, that is P ∈ H(D)
with the power series expansion

(2) P (z) = 1 +

∞∑
n=1

pn z
n, z ∈ D,

such that ReP (z) > 0, z ∈ D.
The Hankel determinant for a given function f of the form (1) is defined by

Hq,k(f) :=

∣∣∣∣∣∣∣∣∣
ak ak+1 . . . ak+q−1

ak+1 ak+2 . . . ak+q

...
...

...
...

ak+q−1 ak+q . . . ak+2q−2

∣∣∣∣∣∣∣∣∣ (a1 = 1, q, k ∈ N := {1, 2, 3, . . . }) ,
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and the investigation of the Hankel determinants for various classes of analytic
functions started in the 1960’s. It was Pommerenke [9, 10] who first studied
Hankel’s determinant for the class S of the univalent functions given by (1),
and he proved in [10] that for all the functions f ∈ S we have |Hq,k(f)| <
Mk−(

1
2+β)q+ 3

2 , where k, q ∈ N, q ≥ 2, β > 1/4000, and M depends only on q.
Similar researches, but for different classes, were reported by Noor [7, 8].

Many recent papers have been devoted to the problem of finding the best
upper bounds of |Hq,k| for various subfamilies of H(D), and the majority of the
results were obtained for H2,2 = a2a4 − a23 which is called the second Hankel
determinant.

For the particular values q = 2 and n = 1 the Hankel determinant reduces
to H2,1 = a3 − a22. Fekete and Szegő made an early study for the estimate of
well known Fekete-Szegő functional

∣∣a3 − µa22
∣∣, where µ is a real or a complex

number. Also, there are many published papers that discuss the third Hankel
determinant H3,1(f) (see, for example, [1, 11, 14]).

The function f ∈ A is said to be close-to-convex in D, written f ∈ K, if
there exists a starlike function h in D normalized with the conditions h(0) =
h′(0)− 1 = 0, such that

(3) Re
zf ′(z)

h(z)
> 0, z ∈ D.

The last known result about |H3,1(f)| for f ∈ K was obtained by Prajapat

et al. in [11, Theorem 3], which proved that |H3,1(f)| ≤
289

12
= 24.08333 . . . .

In this paper we essentially improved the result for the above upper bound of
third Hankel determinant |H3,1(f)| if f ∈ K.

2. Preliminary Results

The next lemmas contained in this section are necessary to prove our main
results.

Lemma 2.1. [5, (3.5) and (3.9)], [6, (3.9) and (3.10)] Let the function P
given by (2) be a member of the class P. Then,

p2 =
1

2

[
p21 +

(
4− p21

)
x
]
,

and

p3 =
1

4

[
p31 + 2

(
4− p21

)
p1x−

(
4− p21

)
p1x

2 + 2
(
4− p21

) (
1− |x|2

)
z
]

for some complex numbers x, z satisfying |x| ≤ 1 and |z| ≤ 1.

The next result represents the well-known Carathéodory’s lemma, and for
complementary results see also [3].
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Lemma 2.2. [2] If P ∈ P and given by (2), then |pk| ≤ 2 for all k ≥ 1,

and the result is best possible for the function P∗(z) :=
1 + ρz

1− ρz
, with ρ ∈ C,

|ρ| = 1.

The following result deals with the sharp upper bounds of the coefficients
of the close-to-convex functions.

Lemma 2.3. [13, Theorem 1] If f ∈ K is given by (1), then |an| ≤ n for
all n ≥ 2. The equality holds for all the values of n when f is a rotation of the

Koebe function, that is Kτ (z) =
z

(1 + eiτz)
2 , τ ∈ R.

The next two results give us the upper bounds for some coefficient com-
binations for the functions of the class S∗ of starlike normalized functions in
D.

Lemma 2.4. [12, Lemma 4] If h ∈ S∗ is given by (6) and µ ∈ R, then

∣∣b3 − µb22
∣∣ ≤


1 +

(
1

2
− µ

)
|b2|2, if µ ≤ 3

4
,

1 + (µ− 1)|b2|2, if µ ≥ 3

4
.

Lemma 2.5. [12, Lemma 5] If h ∈ S∗ is given by (6), then∣∣∣∣b4 − 7

9
b2b3

∣∣∣∣ ≤ H(|b2|),

where

(4) H(b) =


1

3

(
2 +

7

18
b2 +

25

36
b3
)
, if b ∈

[
0,

6

7

]
1

9

(
11b− 2b3

)
, if b ∈

[
6

7
, 2

]
.

The last two lemmas we will use in our proof are connected with a coefficient
combination of the close-to-convex functions.

Lemma 2.6. [12, Theorem 1] If f ∈ K is given by (1), then∣∣a2a4 − a23
∣∣ ≤ 1.242 . . . .

Lemma 2.7. [4, Corollary 3 for λ = 1] If the function f ∈ K is given by
(1), then

|a3 − a22| ≤ 1.

The equality is attained for the function
(
Kπ(z

2)
)1/2

=
z

1− z2
.
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3. Main results

The next theorem will be used to obtain our main result.

Theorem 3.1. If the function f ∈ K is given by (1), then

(5) |a2a3 − a4| ≤ 2.33333333333333348 . . . .

Proof. Suppose that f ∈ K has the form (1) and satisfy the condition (3),
that is

zf ′(z)

h(z)
= P (z), z ∈ D, with h ∈ S∗, P ∈ P.

If h be given by

(6) h(z) = z +
∞∑
k=2

bk z
k, z ∈ D,

and P has the form (2), we get

z +

∞∑
n=2

nanz
n =

(
z +

∞∑
n=2

bnz
n

)(
1 +

∞∑
n=1

pnz
n

)
, z ∈ D,

which yields

a2 =
1

2
(b2 + p1),(7)

a3 =
1

3
(b3 + b2p1 + p2),(8)

a4 =
1

4
(b4 + b3p1 + b2p2 + p3).(9)

Since f ∈ K, by using (7), (8) and (9) we get

a2a3 − a4 = −1

4

(
b4 −

7

9
b2b3

)
− 1

36
b2b3 −

1

12

(
b3 − 2b22

)
p1

+
1

12
(2p1 − b2) p2 +

1

6

(
b2p

2
1

)
− 1

4
p3,

and from Lemma 2.1 it follows

a2a3 − a4 = −1

4

(
b4 −

7

9
b2b3

)
− 1

36
b2b3 −

1

12

(
b3 − 2b22

)
p1

+
1

48
p31 +

4− p21
24

x(2p− b2 − 3p) +
1

8
b2p

2
1 +

1

16

(
4− p21

)
p1x

2

−1

8

(
4− p21

) (
1− |x|2

)
z,(10)

where |x| ≤ 1 and |z| ≤ 1.
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Denoting |p1| =: p ∈ [0, 2], |x| =: ρ ∈ [0, 1], and using the triangle’s inequal-
ity in (10) we get

|a2a3 − a4| ≤
1

4

∣∣∣∣b4 − 7

9
b2b3

∣∣∣∣+ 1

36
|b2| |b3|+

1

12

∣∣b3 − 2b22
∣∣ |p|+ 1

48
|p|3 + 4− p2

24
ρ |p+ b2|

+
1

8
|b2| |p|2 +

1

16

(
4− p2

)
|p| ρ2 + 1

8

(
4− p2

) (
1− ρ2

)
.

Using Lemma 2.3, Lemma 2.4, and Lemma 2.5 with the substitution |b2| =:
b ∈ [0, 2] we obtain

|a2a3 − a4| ≤
1

4
H(b) +

1

12
b+

1

12

(
1 + b2

)
p+

1

48
p3 +

4− p2

24
ρ (p+ b)

+
1

8
b p2 +

1

16

(
4− p2

)
p ρ2 +

1

8

(
4− p2

) (
1− ρ2

)
=: F (p, b, ρ),(11)

where

(12) F (p, b, ρ) = A+Bρ+ Cρ2, p, b ∈ [0, 2], ρ ∈ [0, 1],

with

C =
1

16

(
4− p2

)
(p− 2),

B =
1

24
(p+ b)

(
4− p2

)
,

A =
H(b)

4
+

b

12
+

b2p

12
+

p

12
+

p3

48
+

bp2

8
− p2

8
+

1

2
,

and H(b) given by (4).
According to the inequality (11), to find the upper bound for |a2a3 − a4| we

should determine the value

M := max {F (p, b, ρ) : (p, b) ∈ [0, 2]× [0, 2], ρ ∈ [0, 1]} ,

and from Lemma 2.5, according to (12), a simple computation shows that

F (p, b, ρ) =



H1(p, b, ρ) :=

(
4− p2

)
(p− 2) ρ2

16
+

(
4− p2

)
(p+ b) ρ

24
+

2

3
+

7b2

216
+

25b3

432

+
b

12
+

b2p

12
+

p

12
+

p3

48
+

bp2

8
− p2

8
, if 0 ≤ b ≤ 6

7
,

H2(p, b, ρ) :=

(
4− p2

)
(p− 2) ρ2

16
+

(
4− p2

)
(p+ b) ρ

24
− b3

18
+

7b

18
+

b2p

12

+
p

12
+

p3

48
+

bp2

8
− p2

8
+

1

2
, if

6

7
≤ b ≤ 2.

Using the MAPLE� computer software following codes

with(Optimization)

Maximize(H1, {0 <= b, 0 <= p, 0 <= y, b <= 6/7, p <= 2, y <= 1});

Maximize(H2, {0 <= p, 0 <= y, b <= 2, p <= 2, y <= 1, 6/7 <= b});
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where H1 := H1(p, b, ρ) and H2 := H2(p, b, ρ), we obtain

max

{
H1(p, b, ρ) : p ∈ [0, 2], ρ ∈ [0, 1], 0 ≤ b ≤ 6

7

}
= H1

(
1.81101117886148,

6

7
, 1

)
= 1.19688382931563142 . . . ,

max

{
H2(p, b, ρ) : p ∈ [0, 2], ρ ∈ [0, 1],

6

7
≤ b ≤ 2

}
= H2(2, 2, 0.915977063761207)

= 2.33333333333333348 . . . ,

hence M = 2.33333333333333348 . . . and the assertion (5) is reached.

Remark 3.2. 1. In [11] the authors estimated that |a2a3 − a4| ≤ 3, while
Theorem 3.1 improve this result.

2. Since we didn’t proved that our result is the best possible, to find the
smallest upper bound of |a2a3 − a4| for f ∈ K given by (1) remains an inter-
esting open problem.

The next theorem contains our main result where we determined the upper
bound for |H3,1(f)| if f ∈ K.

Theorem 3.3. If the function f ∈ K is given by (1), then

(13) |H3,1(f)| ≤ 18.058 . . . .

Proof. Let f ∈ K be of the form (1). Since

H3,1(f) = a3
(
a2a4 − a23

)
− a4 (a4 − a3a2) + a5

(
a3 − a22

)
,

and from the triangle’s inequality we get

(14) |H3,1(f)| ≤ |a3|
∣∣a2a4 − a23

∣∣+ |a4| |a4 − a3a2|+ |a5|
∣∣a3 − a22

∣∣ .
Using Lemma 2.3 and the inequalities of Lemma 2.6, Lemma 2.7 and (5),

from (14) it follows that

|H3,1(f)| ≤ 3 · 1.242 . . .+ 4 · 2.333 . . .+ 5 · 1 = 18.058 . . . .

Remark 3.4. 1. The bound given by (13) is an improvement of Theorem

3 from [11], where it was proved that |H3,1(f)| ≤
289

12
= 24.08333333 . . . .

2. We used in the proof of this theorem the inequality (5) that possibly
doesn’t gives the best upper bound for |a2a3 − a4| whenever f ∈ K is given by
(1). Thus, we didn’t proved that the bound of (13) is the best possible, and
this remains a challenging open question.
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