• 제목/요약/키워드: Error bounds

검색결과 207건 처리시간 0.027초

Upper Bounds for the Performance of Turbo-Like Codes and Low Density Parity Check Codes

  • Chung, Kyu-Hyuk;Heo, Jun
    • Journal of Communications and Networks
    • /
    • 제10권1호
    • /
    • pp.5-9
    • /
    • 2008
  • Researchers have investigated many upper bound techniques applicable to error probabilities on the maximum likelihood (ML) decoding performance of turbo-like codes and low density parity check (LDPC) codes in recent years for a long codeword block size. This is because it is trivial for a short codeword block size. Previous research efforts, such as the simple bound technique [20] recently proposed, developed upper bounds for LDPC codes and turbo-like codes using ensemble codes or the uniformly interleaved assumption. This assumption bounds the performance averaged over all ensemble codes or all interleavers. Another previous research effort [21] obtained the upper bound of turbo-like code with a particular interleaver using a truncated union bound which requires information of the minimum Hamming distance and the number of codewords with the minimum Hamming distance. However, it gives the reliable bound only in the region of the error floor where the minimum Hamming distance is dominant, i.e., in the region of high signal-to-noise ratios. Therefore, currently an upper bound on ML decoding performance for turbo-like code with a particular interleaver and LDPC code with a particular parity check matrix cannot be calculated because of heavy complexity so that only average bounds for ensemble codes can be obtained using a uniform interleaver assumption. In this paper, we propose a new bound technique on ML decoding performance for turbo-like code with a particular interleaver and LDPC code with a particular parity check matrix using ML estimated weight distributions and we also show that the practical iterative decoding performance is approximately suboptimal in ML sense because the simulation performance of iterative decoding is worse than the proposed upper bound and no wonder, even worse than ML decoding performance. In order to show this point, we compare the simulation results with the proposed upper bound and previous bounds. The proposed bound technique is based on the simple bound with an approximate weight distribution including several exact smallest distance terms, not with the ensemble distribution or the uniform interleaver assumption. This technique also shows a tighter upper bound than any other previous bound techniques for turbo-like code with a particular interleaver and LDPC code with a particular parity check matrix.

A new adaptive mesh refinement strategy based on a probabilistic error estimation

  • Ziaei, H.;Moslemi, H.
    • Structural Engineering and Mechanics
    • /
    • 제74권4호
    • /
    • pp.547-557
    • /
    • 2020
  • In this paper, an automatic adaptive mesh refinement procedure is presented for two-dimensional problems on the basis of a new probabilistic error estimator. First-order perturbation theory is employed to determine the lower and upper bounds of the structural displacements and stresses considering uncertainties in geometric sizes, material properties and loading conditions. A new probabilistic error estimator is proposed to reduce the mesh dependency of the responses dispersion. The suggested error estimator neglects the refinement at the critical points with stress concentration. Therefore, the proposed strategy is combined with the classic adaptive mesh refinement to achieve an optimal mesh refined properly in regions with either high gradients or high dispersion of the responses. Several numerical examples are illustrated to demonstrate the efficiency, accuracy and robustness of the proposed computational algorithm and the results are compared with the classic adaptive mesh refinement strategy described in the literature.

기동특성에 따른 ARS 자세 성능향상 기법 (The Improvement Method of ARS Attitude depeding on Dynamic Conditions)

  • 박찬주;이상정
    • 한국군사과학기술학회지
    • /
    • 제11권6호
    • /
    • pp.30-37
    • /
    • 2008
  • The ARS(Attitude Reference System) calculates an attitude of a vehicle using inertial angular rate sensors and acceleration sensors. The attitude error of ARS increases due to the integration of angular rate sensor output. To reduce the attitude error an acceleration of sensor is used similar to leveling method of INS(Inertial Navigation System). When an acceleration of vehicle is increased, it is difficult to calculate the attitude error using acceleration sensor output. In this paper the estimation method of acceleration due to the attitude error only is proposed. Two methods of the attitude calculation depending on vehicle dynamics and the integration method of these two methods are proposed. To verify its performance the monte carlo simulation is performed and shows that it bounds attitude error of ARS to reasonable level.

Function Approximation Based on a Network with Kernel Functions of Bounds and Locality : an Approach of Non-Parametric Estimation

  • Kil, Rhee-M.
    • ETRI Journal
    • /
    • 제15권2호
    • /
    • pp.35-51
    • /
    • 1993
  • This paper presents function approximation based on nonparametric estimation. As an estimation model of function approximation, a three layered network composed of input, hidden and output layers is considered. The input and output layers have linear activation units while the hidden layer has nonlinear activation units or kernel functions which have the characteristics of bounds and locality. Using this type of network, a many-to-one function is synthesized over the domain of the input space by a number of kernel functions. In this network, we have to estimate the necessary number of kernel functions as well as the parameters associated with kernel functions. For this purpose, a new method of parameter estimation in which linear learning rule is applied between hidden and output layers while nonlinear (piecewise-linear) learning rule is applied between input and hidden layers, is considered. The linear learning rule updates the output weights between hidden and output layers based on the Linear Minimization of Mean Square Error (LMMSE) sense in the space of kernel functions while the nonlinear learning rule updates the parameters of kernel functions based on the gradient of the actual output of network with respect to the parameters (especially, the shape) of kernel functions. This approach of parameter adaptation provides near optimal values of the parameters associated with kernel functions in the sense of minimizing mean square error. As a result, the suggested nonparametric estimation provides an efficient way of function approximation from the view point of the number of kernel functions as well as learning speed.

  • PDF

Some Recent Results of Approximation Algorithms for Markov Games and their Applications

  • 장형수
    • 한국전산응용수학회:학술대회논문집
    • /
    • 한국전산응용수학회 2003년도 KSCAM 학술발표회 프로그램 및 초록집
    • /
    • pp.15-15
    • /
    • 2003
  • We provide some recent results of approximation algorithms for solving Markov Games and discuss their applications to problems that arise in Computer Science. We consider a receding horizon approach as an approximate solution to two-person zero-sum Markov games with an infinite horizon discounted cost criterion. We present error bounds from the optimal equilibrium value of the game when both players take “correlated” receding horizon policies that are based on exact or approximate solutions of receding finite horizon subgames. Motivated by the worst-case optimal control of queueing systems by Altman, we then analyze error bounds when the minimizer plays the (approximate) receding horizon control and the maximizer plays the worst case policy. We give two heuristic examples of the approximate receding horizon control. We extend “parallel rollout” and “hindsight optimization” into the Markov game setting within the framework of the approximate receding horizon approach and analyze their performances. From the parallel rollout approach, the minimizing player seeks to combine dynamically multiple heuristic policies in a set to improve the performances of all of the heuristic policies simultaneously under the guess that the maximizing player has chosen a fixed worst-case policy. Given $\varepsilon$>0, we give the value of the receding horizon which guarantees that the parallel rollout policy with the horizon played by the minimizer “dominates” any heuristic policy in the set by $\varepsilon$, From the hindsight optimization approach, the minimizing player makes a decision based on his expected optimal hindsight performance over a finite horizon. We finally discuss practical implementations of the receding horizon approaches via simulation and applications.

  • PDF

ON SEMILOCAL CONVERGENCE OF A MULTIPOINT THIRD ORDER METHOD WITH R-ORDER (2 + p) UNDER A MILD DIFFERENTIABILITY CONDITION

  • Parida, P.K.;Gupta, D.K.;Parhi, S.K.
    • Journal of applied mathematics & informatics
    • /
    • 제31권3_4호
    • /
    • pp.399-416
    • /
    • 2013
  • The semilocal convergence of a third order iterative method used for solving nonlinear operator equations in Banach spaces is established by using recurrence relations under the assumption that the second Fr´echet derivative of the involved operator satisfies the ${\omega}$-continuity condition given by $||F^{\prime\prime}(x)-F^{\prime\prime}(y)||{\leq}{\omega}(||x-y||)$, $x,y{\in}{\Omega}$, where, ${\omega}(x)$ is a nondecreasing continuous real function for x > 0, such that ${\omega}(0){\geq}0$. This condition is milder than the usual Lipschitz/H$\ddot{o}$lder continuity condition on $F^{\prime\prime}$. A family of recurrence relations based on two constants depending on the involved operator is derived. An existence-uniqueness theorem is established to show that the R-order convergence of the method is (2+$p$), where $p{\in}(0,1]$. A priori error bounds for the method are also derived. Two numerical examples are worked out to demonstrate the efficacy of our approach and comparisons are elucidated with a known result.

The Dynamic Relationship of Domestic Credit and Stock Market Liquidity on the Economic Growth of the Philippines

  • CAMBA, Abraham C. Jr.;CAMBA, Aileen L.
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권1호
    • /
    • pp.37-46
    • /
    • 2020
  • The paper examines the dynamic relationship of domestic credit and stock market liquidity on the economic growth of the Philippines from 1995 to 2018 applying the autoregressive distributed lag (ARDL) bounds testing approach to cointegration, together with Granger causality test based on vector error correction model (VECM). The ARDL model indicated a long-run relationship of domestic credit and stock market liquidity on GDP growth. When the GDP per capita is the dependent variable there is weak cointegration. Also, the Johansen cointegration test confirmed the existence of long-run relationship of domestic credit and stock market liquidity both on GDP growth and GDP per capita. The VECM concludes a long-run causality running from domestic credit and stock market liquidity to GDP growth. At levels, domestic credit has significant short-run causal relationship with GDP growth. As for stock market liquidity at first lag, has significant short-run causal relationship with GDP growth. With regards to VECM for GDP per capita, domestic credit and stock market liquidity indicates no significant dynamic adjustment to a new equilibrium if a disturbance occurs in the whole system. At levels, the results indicated the presence of short-run causality from stock market liquidity and GDP per capita. The CUSUMSQ plot complements the findings of the CUSUM plot that the estimated models for GDP growth and GDP per capita were stable.

외란관측기법과 최대최소 제어방법을 이용한 시변 입력 외란을 갖는 선형 시스템의 점근 안정화 (Asymptotic Stabilization of Linear Systems with Time-Varying Input Disturbances Using Disturbance Observer Techniques and Min-Max Control Method)

  • 송성호;김백섭
    • 제어로봇시스템학회논문지
    • /
    • 제10권1호
    • /
    • pp.15-21
    • /
    • 2004
  • This paper deals with asymptotic stabilization problems for linear systems with time-varying input disturbances. In order to eliminate the influence of a disturbance on the system, a disturbance observer is designed and the time-varying disturbance can be rejected using its estimated value. Since the disturbance observer is kind of low-pass filter, it has inevitably estimation errors. To eliminate the inflences on the performance due to these errors, the additional control is designed based on these estimation errors using a well-known min-max control method. It is shown that the asymptotic stability of the closed-loop system is guaranteed. In general, the min-max control method requires the switching of control inputs and the switching magnitude of the control input is determined by the disturbance estimation error bounds. As the error bounds can be made arbitrarily small by choosing the high gain for the disturbance observer, the control method suggested in this paper can reduce the chattering phenomena as small as possible. Therefore, it has superior performance to the existing ones.

Estimating the Nature of Relationship of Entrepreneurship and Business Confidence on Youth Unemployment in the Philippines

  • CAMBA, Aileen L.
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권8호
    • /
    • pp.533-542
    • /
    • 2020
  • This study estimates the nature of the relationship of entrepreneurship and business confidence on youth unemployment in the Philippines over the 2001-2017 period. The paper employed a range of cointegrating regression models, namely, autoregressive distributed lag (ARDL) bounds testing approach, Johansen-Juselius (JJ) and Engle-Granger (EG) cointegration models, dynamic OLS, fully modified OLS, and canonical cointegrating regression (CCR) estimation techniques. The Granger causality based on error correction model (ECM) was also performed to determine the causal link of entrepreneurship and business confidence on youth unemployment. The ARDL bounds testing approach, Johansen-Juselius (JJ) and Engle-Granger (EG) cointegration models confirmed the existence of long-run equilibrium relationship of entrepreneurship and business confidence on youth unemployment. The long-run coefficients from JJ and dynamic OLS show significant long-run and positive relationship of entrepreneurship and business confidence on youth unemployment. While results of the long-run coefficients from fully modified OLS and canonical cointegrating regression (CCR) found that only entrepreneurship has significant and positive relationship with youth unemployment in the long-run. The Granger causality based on error correction model (ECM) estimates show evidence of long-run causal relationship of entrepreneurship and business confidence on youth unemployment. In the short-run, increases in entrepreneurship and business confidence causes youth unemployment to decrease.

근사화 오차 유계 추정을 이용한 비선형 시스템의 적응 퍼지 슬라이딩 모드 제어 (Adaptive Fuzzy Sliding Mode Control for Nonlinear Systems Using Estimation of Bounds for Approximation Errors)

  • 서삼준
    • 한국지능시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.527-532
    • /
    • 2005
  • 본 논문에서 불확실한 근사화 오차 유계 추정을 이용한 불확실한 비선형 계통에 대한 적응 퍼지 슬라이딩 모드 제어기를 제안하였다. 계통 출력이 기준 출력을 추종하기 위해 시스템의 불확실성은 결론부 파라미터의 적응 알고리즘에 의해 온라인으로 조정되는 IF-THEN 규칙을 가지는 퍼지 시스템에 의해 근사화하였다. 또한 근사화 오차가 미지의 상수에 의해 유계된다는 가정 하에 리아프노프 합성법으로 근사화 오차 유계 추정 알고리즘을 제안하였다. 전체 제어 시스템은 제어기내의 모든 신호가 균등 유계이고 추종오차가 점근 안정함을 보장한다. 제안한 적응 퍼지 슬라이딩 모드 제어기의 성능을 도립진자 계통에 대한 컴퓨터 모의실험을 통해 입증하였다.