References
- I.K. Argyros, A Note on the Halley Method in Banach Spaces, Applied Mathematics and Computation, 58 (1993) 215-224. https://doi.org/10.1016/0096-3003(93)90137-4
- V. Candela, A. Marquina, Recurrence Relations for Rational Cubic Methods I: The Halley Method, Computing, 44 (1990) 169-184. https://doi.org/10.1007/BF02241866
- V. Candela, A. Marquina, Recurrence Relations for Rational Cubic Methods II: The Chebyshev Method, Computing, 45 (1990) 355-367. https://doi.org/10.1007/BF02238803
- H.T. Davis, Introduction to nonlinear differenctial and integral equations, Dover, New York, 1962.
- J.A. Ezquerro, M.A. Hernandez, Generalized differentiability conditions for Newton's method, IMA Journal of Numerical Analysis, 22 (2002) 187-205. https://doi.org/10.1093/imanum/22.2.187
- J.A. Ezquerro, M.A. Hernandez, On the R-order of convergence of Newton's method under mild differentiability conditions, Journal of Computational and Applied Mathematics, 197 (2006) 53-61. https://doi.org/10.1016/j.cam.2005.10.023
- J.A. Ezquerro, M.A. Hernandez, On the R-order of the Halley method, Journal of Mathematical Analysis and Applications, 303 (2005) 591-601. https://doi.org/10.1016/j.jmaa.2004.08.057
- J.M. Gutierrez, M.A. Hernandez, Recurrence Relations for the Super-Halley Method, Computers and Mathematics with Applications, 36 (1998) 1-8.
- M. Ganesh, M.C. Joshi, Numerical solvability of Hammerstein integral equations of mixed type, IMA Journal of Numerical Analysis, 11 (1991) 21-31. https://doi.org/10.1093/imanum/11.1.21
- M.A. Hernandez, M.A. Salanova, Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method, Journal of Computational and Applied Mathematics, 126 (2000) 131-143. https://doi.org/10.1016/S0377-0427(99)00347-7
- M.A. Hernandez, N. Romero, On a new multiparametric family of Newton-like methods, Applied Numerical Analysis and Computational Mathematics, 2 (2005) 78-88. https://doi.org/10.1002/anac.200410025
- M.A. Hernandez, Reduced Recurrence Relations for the Chebyshev Method, Journal of Optimization Theory and Applications, 98 (1998) 385-397. https://doi.org/10.1023/A:1022641601991
- M.A. Hernandez, Chebyshev's Approximation Algorithms and Applications, Computers and Mathematics with Applications, 41 (2001) 433-445. https://doi.org/10.1016/S0898-1221(00)00286-8
- M.A. Hernandez, Second-Derivative-Free Variant of the Chebyshev Method for Nonlinear Equations, Journal of Optimization Theory and Applications, 104 (2000) 501-515. https://doi.org/10.1023/A:1004618223538
- L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982.
- J.D. Lambert, Computational Methods in Ordinary Differential Equations, Wiley, New York, 1979.
- J.M. Ortega, W.C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, 1970.
- A.D. Polyanin and A.V. Manzhirov, Handbook of integral equations, CRC Press, Boca Raton, Florida, 1998.
- L.B. Rall, Computational solution of nonlinear operator equations, Robert E. Krieger, New York, 1979.
- J.F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, NJ, 1964.
- Q. Wu, Y. Zhao, Third-order convergence theorem by using majorizing function for a modified Newton method in Banach space, Applied Mathematics and Computation, 175 (2006) 1515-1524. https://doi.org/10.1016/j.amc.2005.08.043
- X. Ye, C. Li, Convergence of the family of the deformed Euler-Halley iterations under the Holder condition of the second derivative, Journal of Computational and Applied Mathematics, 194 (2006) 294-308. https://doi.org/10.1016/j.cam.2005.07.019
Cited by
- On the Semilocal Convergence of the Multi-Point Variant of Jarratt Method: Unbounded Third Derivative Case vol.7, pp.6, 2019, https://doi.org/10.3390/math7060540
- Semilocal Convergence of Modified Chebyshev-Halley Method for Nonlinear Operators in Case of Unbounded Third Derivative vol.14, pp.1, 2013, https://doi.org/10.1134/s1995423921010043